
Science of Computer Programming 123 (2016) 42–60

Contents lists available at ScienceDirect

Science of Computer Programming

www.elsevier.com/locate/scico

Basic behavioral models for software product lines:
Expressiveness and testing pre-orders

Harsh Beohar, Mahsa Varshosaz, Mohammad Reza Mousavi ∗,1

Centre for Research on Embedded Systems (CERES), School of IT, Halmstad University, Sweden

a r t i c l e i n f o a b s t r a c t

Article history:
Received 10 October 2014
Received in revised form 11 June 2015
Accepted 12 June 2015
Available online 9 July 2015

Keywords:
Software product lines
Formal specification
Behavioral specification
Labeled transition systems
Featured transition systems
Modal transition systems
Calculus of communicating systems (CCS)
Product line CCS (PL-CCS)

In order to provide a rigorous foundation for Software Product Lines (SPLs), several
fundamental approaches have been proposed to their formal behavioral modeling. In this
paper, we provide a structured overview of those formalisms based on labeled transition
systems and compare their expressiveness in terms of the set of products they can specify.
Moreover, we define the notion of tests for each of these formalisms and show that our
notions of testing precisely capture product derivation, i.e., all valid products will pass the
set of test cases of the product line and each invalid product fails at least one test case of
the product line.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

1.1. Motivation

Software product lines (SPLs) are becoming increasingly popular as efficient means for mass production and mass
customization of software. Hence, establishing formal foundations for specification and verification of SPLs can benefit a
large community and can have substantial impact. In the last few years, many researchers have spent substantial effort in
extending various formalisms and their associated reasoning techniques to the SPL settings, of which [1–5] provide a com-
prehensive overview.

In this paper, we put some structure to the body of knowledge regarding some of the most fundamental extensions of
behavioral models for SPLs, namely, those based on labeled transition systems, such as those proposed or studied in [6–19].
These basic models can serve as semantic models for extensions of higher level models such as domain specific languages
(DSLs), or those based on the Unified Modeling Language (UML) state or sequence diagrams. Hence, bringing more structure
into the body of knowledge about these fundamental computational models can help the language designers of higher level
language to make the right choice when defining the semantics of their language.

* Corresponding author.
E-mail addresses: harsh.beohar@hh.se (H. Beohar), mahsa.varshosaz@hh.se (M. Varshosaz), m.r.mousavi@hh.se (M.R. Mousavi).

1 The work of M.R. Mousavi has been partially supported by the Swedish Research Council (Vetenskapsrådet) award number: 621-2014-5057 (Effective
Model-Based Testing of Concurrent Systems) and the Swedish Knowledge Foundation (Stiftelsen för Kunskaps- och Kompetensutveckling) in the context of
the AUTO-CAAS HöG project with award number 20140312*.

http://dx.doi.org/10.1016/j.scico.2015.06.005
0167-6423/© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.scico.2015.06.005
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/scico
http://creativecommons.org/licenses/by/4.0/
mailto:harsh.beohar@hh.se
mailto:mahsa.varshosaz@hh.se
mailto:m.r.mousavi@hh.se
http://dx.doi.org/10.1016/j.scico.2015.06.005
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scico.2015.06.005&domain=pdf

H. Beohar et al. / Science of Computer Programming 123 (2016) 42–60 43

The structure proposed in this paper is twofold: first we compare the expressive power of these fundamental models
and second, we explore the extensional and intensional notions of testing equivalence (pre-orders) for each of them. Some
of the expressiveness results reported in the present paper are hinted at in the literature, but to our knowledge, have never
been formalized and proven before. Regarding the testing equivalences, the extensional notions of testing defined in this
paper – for the models proposed in [14,15,17] – are novel. They are of course based on and slight extensions of well-known
notions of tests for labeled transition systems (e.g., of [20–22] and particularly that of [23]).

1.2. Running example

In order to illustrate the different approaches, we use the following simple example originally due to Asirelli et al. [7]
and further elaborated by Classen [2].

Example 1. We model a product line for vending machines, which accept one-Euro coins (1e) exclusively for the European
market and one-Dollar coins (1d) exclusively for the American market. A user has a choice of adding sugar or no sugar, after
which she is allowed to choose a beverage among coffee, tea, or cappuccino. Furthermore, the following constraints hold on
each product:

1. Coffee must be offered by each and every variant of this product line.
2. Cappuccino is served only by the European machines and whenever cappuccino is served, a ring-tone must ring.
3. Tea is an optional feature for both markets.

1.3. Contributions

The objects of study in this paper are three popular models of computation that are used in the literature to model
SPLs. Namely, we study modal transition systems [24], product line labeled transition systems [17], and featured transition
systems [15]. The contributions of this paper are as follows:

• Firstly, we formally show that the class of modal transition systems are strictly less expressive than the class of product
line labeled transition systems, which are in-turn strictly less expressive than the class of featured transition systems.

• Secondly, we show how the test expressions of Abramsky [23] can be used to characterize product derivation for each
of the above models of software product line.

1.4. Paper structure

The rest of this paper is organized as follows. In Section 2, we present an overview of the product-line formalisms studied
in this paper and recall or define their intuitive notion of derived products. In Section 3, we compare the expressiveness
of formalisms by comparing their set of definable products. In Section 4, we define the extensional notions of test for the
formalisms and prove that they coincide with their intensional counter-parts. The paper is concluded in Section 5 with a
summary of the results and some directions of our ongoing research.

2. Fundamental behavioral models of SPLs

2.1. Overview

Conventional formal models such as labeled transition systems (LTSs) can be used to specify the behavior of systems
at a high level of abstraction. Namely, LTSs specify how a system execution evolves on an abstract machine in terms of
transitions that are labeled with the information that is received/made available through each execution step from/to the
outside world. However, in order to formally specify a software product line, one needs specific (semantic) notions to refer
to variation points, distinguish different features and refer to their possible interactions. Below, we give an overview of
several alternatives proposed as fundamental behavioral models of software product lines.

As the first alternative, Fischbein et al. [6] argue that modal transition systems (MTSs) [24] are adequate extensions of
LTSs to model a software product line: MTSs partition the transitions into may and must transitions and hence, each MTS
has an associated set of possible implementations. Subsequently, several researchers [7–9,12,13] adopted modal transition
system as a formal model to perform rigorous analysis of software product lines. Several pieces of work [7–9] addressed
the issue of deriving valid products from a given MTS by model checking against formulae expressed in a deontic logic
called Modal-Hennessy–Milner-Logic (MHML). Others [13,12] developed an interface theory and a testing theory for software
product lines.

Classen et al. [14,15] took a different route by annotating LTSs with features of a feature diagram. Intuitively, a feature
diagram specifies, by means of a graphical notation, the set of valid products by specifying constraints on the presence of
features. The result of annotating LTSs with features is called a featured transition system (FTS). Furthermore, an LTL-model
checking algorithm in the context of featured transition system was given in [15]. Cordy et al. [16] extended the earlier

44 H. Beohar et al. / Science of Computer Programming 123 (2016) 42–60

Fig. 1. LTS-based behavioral models of SPLs.

work [14,15] by incorporating non-boolean features and multi-features in a high-level specification language called TVL∗ .
Also, an algorithm was given to construct an FTS from a behavioral specification written in TVL∗ .

As another alternative, Gruler et al. [17] extended Milner’s CCS [25] into a process calculus called PL-CCS. The extension
involves introducing the “binary variant” ⊕ operator to represent the alternative features of a product line. Like MTSs,
the validity of products is asserted by model checking formulae specified in a multi-valued modal mu-calculus, originally
due to [26]. The semantics of the logic specifies, for each PL-CCS process, the set of configurations that satisfy the logical
formula.

In addition, there are also other alternatives for specifying the behavior of SPLs that fall beyond the scope of the present
paper. For example, there are proposals based on re-using existing process algebras with data (see, e.g., [27–29]) or ex-
tending Petri Nets with features (see, e.g., [30,31]). In order to perform a formal comparison of expressiveness, we confine
ourselves to models that are based on LTSs (e.g., those models that specify a set of products captured by an LTS) and hence,
the other approaches mentioned in this paragraph are not considered any further. Also, there are extensions of higher-level
formalisms such as UML that are not considered in this paper, since they either lack formal semantics or their semantics
can be expressed in the more fundamental formalisms such as those studied in this paper.

In Fig. 1, we summarize the different extensions of LTSs for the behavioral modeling of SPLs. In this figure, the solid
arrows show the possibility of transforming a model from one formalism into another. In [12], the authors gave a semantics
for a restrictive notion of FTS in terms of an MTS. One of the two main contributions of this paper is to complete this
picture, and hence generalize the result of [12], by presenting (or showing the impossibility of) encodings among PL-CCS,
MTSs and FTSs. This is represented by the dashed arrow in Fig. 1. In the remainder of this section, MTSs are surveyed in
Section 2.2 and FTSs are reviewed in Section 2.3. In Section 2.4, we survey process-algebraic approaches to SPL specification.

2.2. Modal transition systems

2.2.1. Specifying SPLs
Modal transition systems extend labeled transition systems by distinguishing two different sorts of transitions, namely,

may and must transitions. May transitions, as their name suggests, may (or may not) be present in the implementation
behavior, while must transitions are always present. As a sanity condition, it is required that all must transitions also have
a corresponding may transition. The following definition formalizes these concepts.

Definition 1. A modal transition system (MTS) [24] is a quadruple (P, A, −→♦, −→�), where P is a set of states or processes,
A is a set of actions, −→♦⊆ P × A ×P is the so-called may transition relation, and −→�⊆−→♦ is the so-called must transition
relation.

An MTS can only describe the behavior of optional and mandatory features of a product line in terms of may and
must transition relations, respectively. An MTS specifies a unique LTS when −→�=−→♦ , i.e., when all transitions are must
transitions, and vice versa, an LTS can be interpreted as an MTS by interpreting ordinary transitions as must transitions.
Throughout the rest of this section, we fix the letters P , P ′, Q , Q ′ to denote the states of an MTS, whereas, p, p′, q, q′ are
used to denote the states of an LTS.

Example 2. Consider the informal description given in Example 1. The MTS shown in Fig. 2(a) (due to [7]), formally specifies
this product line. In this MTS, solid arrows denote must transitions and dashed arrows denote may transitions. (For must
transitions we dispense with drawing the corresponding may transitions and tacitly assume their presence.)

2.2.2. Deriving products
A key notion within the theory of MTS is modal refinement [24], which allows for deriving products (MTSs with fewer

may and more must transitions) from product lines, or testing conformance of products to product lines. Informally, if P
refines Q then all must transitions of P are simulated by Q , while all may transitions of Q are simulated by P . Another
intuition shared by modal refinement relation is that some of the may transitions of P can be either transformed into must
transitions of Q or blocked by Q , whenever P refines Q .

H. Beohar et al. / Science of Computer Programming 123 (2016) 42–60 45

Fig. 2. MTS approach to modeling SPLs.

Definition 2. A binary relation R ⊆ P × P is a modal refinement [24] relation if and only if the following transfer properties
are satisfied.

1. ∀P ,P ′,Q ∈P,a∈A
(
PRQ ∧ P a−→� P ′

)
⇒ ∃Q ′∈P Q a−→� Q ′ ∧ P ′RQ ′ .
2. ∀P ,Q ,Q ′∈P,a∈A

(
PRQ ∧ Q a−→♦ Q ′)
⇒ ∃P ′∈P P a−→♦ P ′ ∧ P ′RQ ′ .

A modal specification P refines a modal specification Q , denoted P Q , if there exists a modal refinement relation R such
that PRQ . The set of products implementing a modal specification P is denoted as P = �p | P p�.

Example 3. Consider the product line MTS specified in Example 2. The LTS shown in Fig. 2(b) specifies a product which
serves only coffee and is customized for the American market. It is not hard to see that the LTS shown in Fig. 2(b) refines
the MTS of Fig. 2(a) by transforming certain may transitions into must transitions, or prohibiting them.

2.3. Featured transition systems

2.3.1. Specifying structural aspects
In [14], the authors pointed out that the derived products from an MTS may be invalid (and counter-intuitive) due to

the inherent lack of expressiveness in MTSs for specifying feature constraints. In common practice, feature diagrams [32]
have been used to model such constraints using a graphical notation. A feature diagram represents all the products of an
SPL in terms of features that are arranged hierarchically. Usually, feature diagrams are represented by a directed acyclic
graph, of which each node is a feature. There are different kinds of edges between a parent (feature) and its children (sub-
features), namely, the ones representing the mandatory sub-features, and the others representing the optional sub-features.
Furthermore, a feature diagram also specifies three additional constraints over features that may span over different levels
of abstraction:

1. Alternative relationship, i.e., the designated sub-features can never be simultaneously present in any product.
2. Exclude relationship, i.e., different features at different levels of hierarchy can never be simultaneously present in any

product.
3. Require relationship, i.e., if a feature is present in a product, the related feature should also be present in the same

product.

For more information and a formal treatment of the syntax and the semantics of feature diagrams, we refer to [32].

Example 4. Consider the feature diagram shown in Fig. 3, which formalizes the features and feature constraints of Exam-
ple 1 [7]. In this diagram every machine must consists of the features coin (o), and beverage (b) and may comprise an

46 H. Beohar et al. / Science of Computer Programming 123 (2016) 42–60

Fig. 3. Feature diagram of the vending machine [7].

optional feature ring-tone (r). The coin feature is further decomposed into two alternative features euro (e) and dollar (d).
Furthermore, Fig. 3 also specifies that cappuccino (p) requires ring-tone (r) denoted by a uni-directional dashed line and
cappuccino is absent in the machine that takes dollars represented by bidirectional dashed line.

A feature diagram only specifies the structural aspects of variability in an SPL. To formally analyze the behavior of an
SPL in [15], the transitions of a labeled transition system are annotated with logical constraints on the presence or absence
of features; the features used in such logical constraints are assumed to be already specified in a feature diagram.

Let B = {�, ⊥} be the set of Boolean constants and let B(F) be the set of all propositional formulae generated by
interpreting the elements of the set F as propositional variables. For instance, in the context of Example 4, the formula
e ∧ ¬d asserts the presence of euro coin and the absence of dollar coin payment features. We let φ, φ′ range over the
set B(F).

Definition 3. A featured transition system (FTS) is a quintuple (P, A, F , →, �), where

1. P is the set of states,
2. A is the set of actions,
3. F is a set of features,
4. →⊆ S × A ×B(F) × S is the transition relation satisfying the following condition:

∀P ,a,P ′,φ,φ′
(
(P ,a, φ, P ′) ∈→ ∧ (P ,a, φ′, P ′) ∈→)
⇒ φ = φ′,

5. � ⊆ {λ : F → B} is a set of product configurations.

Just like in the case of MTSs, we reserve the symbols P , P ′, Q , Q ′ to denote the states of an FTSs. Furthermore, we write
P a−→φ Q ′ to denote an element (P , a, φ, Q ′) ∈→.

Example 5. Consider the MTS in Fig. 2(a); we obtain an FTS by discarding the distinction between may and must transitions
and instead, annotating every transition with a formula over features given in Fig. 3. In the following table, we give the
propositional formula associated with every transition of the vending machine example.

Transitions Features

s1
1e−−→ s2 e

s1
1d−−→ s2 d

s2
coffee−−−−→ s5 c

s2
tea−−→ s6 t

Transitions Features

s2
cappuccino−−−−−−−→ s7 p

s12
ring a tone−−−−−−−→ s13 p ⇒ r

Remaining transitions m

Lastly, the set of product configurations of the vending machine is the following set of 10 products specified by the
feature diagram of Example 4 [9]:

�= {{m,o,b, c,e}, {m,o,b, c,e, r}, {m,o,b, c,e, t}, {m,o,b, c,e, t, r},
{m,o,b, c,e,p, r}, {m,o,b, c,d}, {m,o,b, c,d, r}, {m,o,b, c,d, t},
{m,o,b, c,d, t, r}, {m,o,b, c,e,p, r, t}}.

2.3.2. Deriving valid products
In [15] a class of operators �λ(_), each parameterized by product configurations λ ∈ �, is introduced to project an FTS

into various LTSs, thereby obtaining different products from a product line. Roughly, the operation �λ(_) prunes away those
transitions from a product line whose feature constraints are not satisfied by the product configuration λ.

H. Beohar et al. / Science of Computer Programming 123 (2016) 42–60 47

Definition 4. Given a feature specification P (i.e., a state in an FTS), a set of selected features λ ∈ � induces a state �λ(P)

in an LTS defined by the following operational rule:

λ |
 φ P a−→φ Q

�λ(P)
a−→�λ(Q)

.

It was argued in [14,15] that FTSs are better suited to model a software product line than a modal transition system.
The crucial difference between the two is that all the may transitions in an MTS are independently optional, while in an
FTS, one can make a finer distinction among them by annotating them with more complex boolean formulae pertaining
to different types of feature constraints. In other words, the choice among transitions in an FTS depends on the product
configuration, whereas the choice among may transitions in an MTS is nondeterministic [15].

Example 6. Consider the FTS given in Example 5 and the LTS given in Fig. 2(b) with the addition of transition 1 1e−−→ 2.
The latter is not a valid product of the former and cannot be derived from Definition 4. Note that there exists no valid set
of features or product configuration λ ∈ � such that λ(e) = λ(d) =�. This is due to the semantics of the feature diagram
depicted in Fig. 3, which specifies that e, d are alternative features. As a result, the transition relation defined in Definition 4
can never have a choice between the actions 1e, 1d.

Although the above example suggests that the class of FTSs is expressive enough to specify the different inter-feature
relationships, the notion of deriving valid products (Definition 4) by an FTS is syntactical in nature (e.g., compared to the
notion of deriving valid products by an MTS). This syntax-driven notion of valid product derivation is too rigid for any
semantic analysis such as testing. In particular, we note that Definition 4 is not even closed under strong bisimulation (see
[33] for a formal definition). Next, we present a notion of deriving valid products from an FTS which generalizes Definition 4.

Definition 5. Given an FTS (P, A, F , →, �), an LTS (P, A, →), and a product λ ∈ �. A family of binary relations Rλ ⊆
P × P (parameterized by product configurations) are called product-derivation relations if and only if the following transfer
properties are satisfied.

1. ∀P ,Q ,a,p,φ

(
PRλp ∧ P a−→φ Q ∧ λ |
 φ

) ⇒ ∃q p a−→ q ∧ QRλq;
2. ∀P ,a,p,q

(
PRλp ∧ p a−→ q

) ⇒ ∃Q ,φ P a−→φ Q ∧ λ |
 φ ∧ QRλq.

A state p ∈ P in an LTS derives the product λ from an FTS-specification P ∈ P, denoted by P �λ p, if there exists an Rλ

product-derivation relation such that PRλp.

We end this section on FTSs by highlighting two intuitive properties of the product derivation relation.

Lemma 1. For any given feature specification P and the derived product �λ(P), we have P �λ �λ(P).

Lemma 2. Given any feature specification P and a derived product p with P �λ p, for some product configuration λ. If q is strongly
bisimilar (in the sense of Park [33]) to p, then P �λ q.

2.4. Product line process algebras

Gruler et al. [17] extended Milner’s Calculus of Communicating Systems (CCS) [25] into PL-CCS by introducing the “binary
variant” operator ⊕ to represent the alternative relationship in feature diagrams.

Definition 6. Let A = � ∪ �̄ ∪ {τ } be the alphabet, where �̄ = {ā | a ∈ �}. The syntax of PL-CCS terms e is defined by
the grammar Nil | α.e | e + e′ | e ⊕ e′ | e ‖ e′ | e[f] | e \L, where Nil is the deadlocking process, for each α ∈ A, α._ denotes
action prefixing, _+ _ denotes non-deterministic choice, _⊕ _ denotes binary variant, _ ‖ _ denotes parallel composition, for
each f : A → A, _[f] denotes renaming by means of f , and for each L ⊆ A, _\L denotes the restriction operator (blocking
(co)actions in L). In addition, one may define recursive processes by means of process identifiers and equations.

At the first sight, the variant operator ⊕ is reminiscent of the ordinary alternative composition operator + from CCS;
however, they are substantially different, as the binary variant operator remembers the chosen alternative. For example,
consider process terms s = a.(b.s + c.s) and t = a.(b.t ⊕ c.t). Intuitively, the recursive process s keeps on making a choice
between b and c upon performing a; whereas in t the choice is made at the first iteration after performing the action a and
it is recorded for and respected in all future iterations, i.e., the process behaves deterministically once the choice between
“features” b and c is made once and for all.

As syntactic sugar, a unary operator 〈_〉, called the optional operator, was also introduced to represent the optional
features of a feature diagram. It can be defined in PL-CCS as 〈P 〉 = P ⊕Nil.

48 H. Beohar et al. / Science of Computer Programming 123 (2016) 42–60

Example 7. The following process definition specifies the vending machine product line in PL-CCS.

s1 = 1e.s2 ⊕ 1d.s2 s7 = pour sugar.s8

s2 = sugar.s3 + no sugar.s4 s8 = pour coffee.s11

s3 = coffee.s5 + 〈tea.s6 + cappuccino.s7〉 s9 = pour tea.s12

s4 = coffee.s10 + 〈tea.s9 + cappuccino.s8〉 s10 = pour coffee.s12

s5 = pour sugar.s10 s12 = ring tone.s13 + skip.s13

s6 = pour sugar.s9 s13 = take cup.s1.

The semantics of a PL-CCS term is defined in terms of product line labeled transition systems [17], recalled below, using
a structural operational semantics. Roughly, the states and the transition relations of a product line labeled transition system
are enriched with configuration vectors (i.e., functions of type {L, R, ?}I with I being an index set) that records the selection
made in past about the alternative features.

Definition 7. Let {L, R, ?}I denote the set of all total functions from an index set I to the set {L, R, ?}. A product line labeled
transition system (PL-LTS) is a quadruple (P × {L, R, ?}I , A, I, →) consisting of a set of states P × {L, R, ?}I , a set of actions
A, and a transition relation →⊆ (P × {L, R, ?}I) × (A × {L, R, ?}I) × (P × {L, R, ?}I) satisfying the following restrictions:

1. ∀P ,ν,a,Q ,ν ′,ν ′′ (P , ν) a,ν ′−−−→ (Q , ν ′′)
⇒ ν ′ = ν ′′ .
2. ∀P ,ν,a,Q ,ν ′

(
(P , ν) a,ν ′−−−→ (Q , ν ′) ∧ ν ′ �= ν

)

⇒∃i

(
ν ′(i) �= ν(i)∧ ∀ j �=i ν ′(j)= ν(j)

)
.

3. ∀P ,ν,a,Q ,ν ′,i (P , ν) a,ν ′−−−→ (Q , ν ′) ∧ ν(i) �=?
⇒ ν ′(i) = ν(i).

Notice that, as a consequence of item 2 in Definition 7, for any transition (P , ν) a,ν ′−−−→ (Q , ν ′), if v �= v ′ , we can find a
unique i ∈ I such that ν ′(i) �= ν(i) ∧∀ j �=i ν ′(j) = ν(j). Furthermore, it should also be noted that Conditions 1, 2, and 3 follow
from the operational rules given by Gruler et al. to a PL-CCS term in [17].

Now in order to define when an LTS is a valid product of a given PL-LTS, we need the following notion of ordering on
configurations and configuration vectors.

Definition 8. The ordering relation � on the set {L, R, ?} is defined in the following way:

�= {(?,?), (L, L), (R, R), (?, L), (?, R)}.
We lift this ordering relation to the level of configuration vectors by letting ν � ν ′ ⇐⇒ ∀i∈I ν(i) � ν ′(i), for any ν, ν ′ ∈
{L, R, ?}I .

We end this section on PL-CCS by proposing a definition of product-derivation relations in a similar vein to Definition 5.

Definition 9. Let (P × {L, R, ?}I , A, →) be a PL-LTS and let (P, A, →) be an LTS. A family of binary relations Rθ ⊆ (P ×
{L, R, ?}I) × P (parameterized by every product configuration θ ∈ {L, R}I) is a family of product-derivation relations if and
only if the following transfer properties are satisfied:

1. ∀P ,Q ,a,ν,ν ′,p
(
(P , ν)Rθ p ∧ (P , ν) a−→ν ′ (Q , ν ′) ∧ ν ′ � θ

) ⇒ ∃q p a−→ q ∧ (Q , ν ′)Rθq,
2. ∀P ,a,ν,p,q

(
(P , ν)Rθ p ∧ p a−→ q

) ⇒ ∃Q ,ν ′ (P , ν) a−→ν ′ (Q , ν ′) ∧ ν ′ � θ ∧ (Q , ν ′)Rθq.

A state p ∈ P in an LTS is (the initial state of) a product of a PL-LTS (P , ν) with respect to a configuration vector θ , denoted
by (P , ν) �θ p, if ν � θ and there exists an Rθ product-derivation relation such that PRθ p.

3. Expressiveness results

The goal of this section is to formally compare the expressiveness of the three product line formalisms as outlined in
the previous section. Before we do so, let us bring all the three formalisms under one single definition of a product line
structure. Intuitively, a product line structure consists of a product line specification and a semantic function � � that maps
a specification into a set of implementations (valid products) modeled as LTSs.

Definition 10. Let (P, A, →) be an LTS. A product line structure is a tuple M = (M, � �), where M is the class of all intended
product line models or specifications (in our case: MTSs, FTSs, and PL-LTSs) and � � : M → 2P is the semantic function
mapping a product line specification to a set of LTSs.

H. Beohar et al. / Science of Computer Programming 123 (2016) 42–60 49

Definition 11. An encoding E : M → M′ from a product line structure M = (M, � �) into a product line structure M′ =
(M′, � �′) is a function E :M →M′ satisfying the correctness criterion � � = E ◦ � �′ .

We say that the product line structure M′ is at-least as expressive as M if and only if there exists an encoding E :M →M′ .
Furthermore, we say that the product line structure M′ is less expressive than M, if and only if M is at-least as expressive

as M′ , and M′ is not at-least as expressive as M, i.e., there does not exist any encoding E :M →M′ .

In the remainder of this section, we explore the expressiveness among the classes of MTSs, FTSs, and PL-LTSs. In order
to do this, we start with relating the two less expressive models, i.e., MTSs and PL-LTSs, to each other, and then move up
in the lattice of expressiveness. Note that the “at-least as expressive as” relation is transitive (by the composition of the
encoding functions) and hence, we can use the transitivity to relate the least (i.e., MTSs) and the greatest (i.e., FTSs) points
in the lattice, once we relate the middle-point (i.e., PL-LTSs) to each of them.

The following two theorems relate the expressiveness of PL-LTSs and MTSs.

Theorem 1. The class of PL-LTSs is at-least as expressive as the class of MTSs.

Proof. Consider the MTS (P, A, −→♦, −→�) and some P ∈ P. Let −↠⊆ P × A∗ × P be the reachability relation defined as

follows:
P

ε−↠P

P
s−↠P ′ P ′ a−→♦ P ′′

P
sa−↠P ′′

. Let tr(P) be the set of traces generated by P , i.e., tr(P) = {s | ∃Q P
s−↠ Q }. For state P , we

define a family of transition relations parameterized by the traces of P as follows: Q
a−→♦Q ′ s∈tr(P)

Q
a−→s,P Q ′ . We drop the subscript

P from the family of transition relations whenever it is clear from the context.
Next, we construct a PL-LTS whose configuration vectors are functions of type

tr(P)→
⎛
⎝ ⋃

s∈tr(P)

−→s → {L, R,?}
⎞
⎠ .

The transition relation between the states of PL-LTS is defined as the smallest relation satisfying:

Q a−→� Q ′ s ∈ tr(P) ν ′ =s ν ↑ {(Q ,a, Q ′) �→ L}
(Q , ν)

a,ν ′−−−→ (Q ′, ν ′)

Q a−→� Q ′ s ∈ tr(P) ν ′ =s ν ↑ {(Q ,a, Q ′) �→ R}
(Q , ν)

a,ν ′−−−→ (Q ′, ν ′)

Q a−→♦\� Q ′ s ∈ tr(P) ν ′ =s ν ↑ {{}(Q ,a, Q ′) �→ L}
(Q , ν)

a,ν ′−−−→ (Q ′, ν ′)
where Q a−→♦\� Q ′ ⇐⇒ Q a−→♦ Q ′ ∧ (Q , a, Q ′) /∈ −→� and the expression ν ′ =s ν ↑ {(Q , a, Q ′) �→ X} (for X ∈ {L, R}) is
defined in the following way:

ν ′(s)(Q̄ ā−→s′ Q̄
′)=

{
X if s= s′ ∧ Q̄ = Q ∧ ā= a∧ Q̄ ′ = Q ′
ν(s)(Q̄ ā−→s′ Q̄ ′) otherwise

.

We fix E(P) = (P , ν0), where ν0(s)(Q a−→s′ Q ′) =? for s, s′ ∈ tr(P). Furthermore, we let the symbols θ, θ ′ range over the
total configuration vectors, i.e., the functions of type tr(P) →

(⋃
s∈tr(P) −→s → {L, R}

)
. Now we are in the position to show

that �P � = �E(P)�′ , where �P � = {p | P p} and �E(P)�′ = {p | ∃θ E(P) �θ p}. We divide the proof obligation into two
obligations: �E(P)�′ ⊆ �P � and �P � ⊆ �E(P)�′ , which we prove below.

(�E(P)�′ ⊆ �P �). Let p be a state in an LTS such that P �θ p, for some θ . Define a relation QRq ⇐⇒ ∃ν,s (Q , ν) �θ

q ∧ ν � θ ∧ P
s−↠ Q ∧ p s−↠ q. Next, we show that R is a modal refinement relation.

1. Let Q a−→� Q ′ and QRq. Then, (Q , ν)Rq ∧ ν � θ ∧ P
s−↠ Q ∧ p s−↠ q, for some ν, s. Clearly, sa ∈ tr(P). Let ν ′ =sa ν ↑

{(Q , a, Q ′) �→ θ(sa)(Q a−→sa Q ′)}. Note that θ(sa)(Q a−→sa Q ′) can be either L or R . Then, we find ν ′ � θ . Now from the
transfer property of �θ we find a q′ such that q a−→ q′ ∧ (Q ′, ν ′) �θ q′ . Hence, Q ′Rq′ .

2. Let q a−→ q′ and QRq. Trivial.

(�P � ⊆ �E(P)�′). Let p be some state in an LTS such that P p. Let trm(p) denote the set of maximal traces from the
state p. (Note that a maximal trace is either an infinite trace or a finite trace that leads to a deadlock state.) For every
maximal trace s ∈ trm(p), we know that there is a unique execution e starting from [p]↔ such that dom(e) = s, where
[p]↔ is the transition system modulo strong bisimulation defined in the standard way.2 Therefore, for any maximal trace

2 An execution e starting from [p]↔ is a function e : {s′ | s′ s} → 2P (for any s ∈ tr(p)) such that e(ε) = [p]↔ and e(s′) a−→ e(s′a) ⇐⇒ ∃q,q′ q ∈
e(s′) ∧ q′ ∈ e(s′a) ∧ q a−→ q′ , for every s′ s. Here is the prefix relation between any two words.

50 H. Beohar et al. / Science of Computer Programming 123 (2016) 42–60

Fig. 4. A PL-LTS (left) that cannot be encoded as an MTS.

s ∈ trm(p), we denote the corresponding unique execution by es . Define total configuration vectors θp (for every P p) in
the following way:

θp(s)(Q
a−→s′ Q

′)=
{
L if s ∈ trm(p)∧ s= s′ ∧ ∃s′′s Q es(s′′)∧ Q ′ es(s′′a)
R otherwise

,

where Q X is defined as ∀q q ∈ X
⇒ Q q. Next, we define a relation Rθp as follows:

(Q , ν)Rθp q ⇐⇒ ν � θp ∧ ∃s,s′ s ∈ trm(p)∧ s′ s ∧ P
s′−↠ Q ∧ Q es(s

′)∧ q ∈ es(s
′).

Next, we show that Rθp is a product derivation relation.

1. Let (Q , ν) a,ν ′−−−→ (Q ′, ν ′), ν ′ � θp , and (Q , ν)Rθp q. Then, from the construction of Rθp we have ν � θp ∧ s ∈ trm(p) ∧
P

s′−↠ Q ∧ Q es(s′) ∧ q ∈ es(s′), for some s ∈ trm(p), s′ s.
(a) Let Q a−→� Q ′ . Then, Q q (because Q es(s′) ∧ q ∈ es(s′)) and from the transfer property of modal refinement

we find q a−→ q′ ∧ Q ′ q′ , for some q′ . Thus, there is a maximal trace s̄ ∈ trm(p) such that s′a s̄, q ∈ es̄(s′), and
q′ ∈ es̄(s′a). Hence, due to the construction of Rθp , we get (Q ′, ν ′)Rθp q

′ .
(b) Let Q a−→♦\� Q ′ . Then, ν ′ =s ν ↑ {{}(Q , a, Q ′) �→ L}. But ν ′ � θp , so θp(s)(Q a−→s Q ′) = L. Due to the definition of

θp , we find q a−→ q′, q′ ∈ es(s′a), Q ′ es(s′a), for some q′ . Thus, by the construction of Rθp , we have (Q ′, ν ′)Rθp q
′ .

2. Let q a−→ q′ and (Q , ν)Rθp q. Then, from the construction of Rθp we have ν � θp ∧ s ∈ trm(p) ∧ P
s′−↠ Q ∧ Q es(s′) ∧q ∈

es(s′), for some s ∈ trm(p), s′ s. By using the fact Q q and the transfer property of a modal refinement relation, we
find Q a−→♦ Q ′ ∧ Q ′ q′ , for some Q ′ . Furthermore, since q is reachable from p and q a−→ q′ , so there is a maximal
trace s̄ ∈ trm(p) such that es̄(s̄′) = q and es̄(s̄′a) = q′ (for some s̄′ s̄). So let ν ′ =s̄ ν ↑ (Q ,a, Q ′) �→ L and thus ν ′ � θp .
Moreover, we find (Q , ν) a,ν ′−−−→ (Q ′, ν ′). Thus, by the construction of Rθp , we have (Q ′, ν ′)Rθp q

′ . �
Theorem 2. The class of MTSs is less expressive than the class of PL-LTSs.

Proof. Due to Theorem 1, we know that PL-LTS is at least as expressive as MTS. It hence remains to prove that MTS is not
at least as expressive as PL-LTS, which we show by means of the example depicted in Fig. 4.

We prove by contradiction that the PL-LTS depicted in Fig. 4 (left), where P = a.Nil⊕ b.Nil cannot be encoded using any
sound encoding (satisfying Definition 11) to an MTS. To show this, observe the transition systems of the derived LTSs p and
q drawn in Fig. 4 under θ = L and θ ′ = R .

Suppose there is an encoding E satisfying Definition 11. Clearly, (P , ?) �θ p and (P , ?) �θ ′ q. Then by correctness of E
we have E(P , ?) p and E(P , ?) q. Thus, we can derive the following transitions (for some modal states Pa, Pb) from the
transfer property of modal refinement:

E(P ,?) a−→♦ Pa E(P ,?) b−→♦ Pb.

Therefore, there exists a state r of the following form: r a−→ r′ and r b−→ r′′ (for some r′, r′′) such that E(P) r. And by
correctness of E we get (P , ?) �θ r or (P , ?) �θ ′ r. However, (P , ?) �θ r and (P , ?) �θ ′ r. �

Now that we have related the expressiveness of PL-LTSs and MTSs, we move to the other end of the spectrum, namely
to the comparison of PL-LTSs and FTSs, which is achieved by means of the following two theorems.

Theorem 3. The class of FTSs is at-least as expressive as the class of PL-LTSs.

Proof. Let (P × {L, R, ?}I , A, →) be a PL-LTS. The corresponding FTS is denoted by (P × {L, R, ?}I , A, F , →′, �), where:

• F =⋃
i∈I {Li, Ri}.

• � =∧
i∈I ¬(Li ∧ Ri).

• The transition relation →′ is defined in the following way:

(P , ν)
a,ν−−→ (Q , ν)

(P , ν)
a,�→′ (Q , ν)

(P , ν)
a,ν ′−−→ (Q , ν ′) φ = ν ′(i)i �(i, ν, ν ′)

(P , ν)
a,φ
→′ (Q , ν ′)

,

where �(i, ν, ν ′) ⇐⇒ ν ′(i) �= ν(i) ∧ ∀ j �=i ν ′(j) = ν(j).

H. Beohar et al. / Science of Computer Programming 123 (2016) 42–60 51

Fig. 5. An FTS that cannot be encoded as an PL-LTS.

For any (P , ν) ∈ P × {L, R, ?}I , we fix E(P , ν) = (P , ν). Let �(P , ν)� = {p | ∃θ∈{L,R}I (P , ν) �θ p} and �(P , ν)�′ = {p |
∃λ∈� (P , ν) �λ p}. In the next step, we need to show that �(P , ν)� = �(P , ν)�′ .
(�(P , ν)� ⊆ �(P , ν)�′): Let p ∈ �(P , ν)�. Then (P , ν) �θ p, for some θ ∈ {L, R}I . Define a configuration λθ ∈ � as follows:
λθ (Li) = � ⇐⇒ θ(i) = L and λθ (Ri) = � ⇐⇒ θ(i) = R . Furthermore, consider the following relation Rλθ such that
(Q , ν ′)Rλθ q ⇐⇒ (Q , ν ′) �θ q. It is straightforward to show that Rλθ is a product derivation relation.

(�(P , ν)�′ ⊆ �(P , ν)�): Let p ∈ �(P , ν)�′ . Then P �λ p for some λ ∈�. Let θ ∈ {L, R}I be a configuration vector defined as
θλ(i) = L ⇐⇒ λ(Li) =� and θλ(i) = R ⇐⇒ λ(Ri) =�. Define a relation Rθλ such that (Q , ν ′)Rθλq ⇐⇒ (Q , ν ′) �θλ q. It
is straightforward to verify that Rθλ is a product derivation relation for PL-LTS. �
Theorem 4. The class of PL-LTSs is less expressive than the class of FTSs.

Proof. Due to Theorem 3, we know that FTSs are at least as expressive as PL-LTSs. It remains to show that PL-LTSs are not
at-least as expressive as FTSs.

Consider the FTS as shown in Fig. 5, where fa, fb, fc are three distinct features and the set of valid products � is defined
as the smallest set of functions satisfying the following constraint:

(fa
⇒ (¬ fb ∧¬ fc)) ∧ (fb
⇒ (¬ fa ∧¬ fc)) ∧ (fc
⇒ (¬ fa ∧¬ fb)) .

Through a proof by contradiction, we show that there is no encoding E that can transform the FTS P in the correct way.
Suppose otherwise there is an encoding E of P into an PL-LTS whose configuration vectors are of type {L, R, ?}I (for some
index set I) such that �P � = �E(P)�′ , where �P � = {p | ∃λ∈� P �λ p}, E(P) = (Q , ν0) (for some state Q and configuration
vector ν0 ∈ {L, R, ?}I in an PL-LTS), and �E(P)�′ = {p | ∃θ∈{L,R}I (Q , ν) �θ p}.

Clearly, the transition systems ({px, p′x}, {x}, {(px, x, p′x)} (for x ∈ {a, b, c}) are three valid products of the given FTS P ,
i.e., {pa, pb, pc} ⊆ �P �. So from the correctness requirement of E we have {pa, pb, pc} ⊆ �E(P)�′ . Let θa, θb, θc be the corre-
sponding total configuration vectors that derives the products pa, pb, pc , respectively. Thus, for every x ∈ {a, b, c} we have
ν0 � θx . Furthermore, from the transfer property of product derivation we find (Q , ν0)

x,νx−−−→ (Qx, νx) such that νx � θx ,
for x ∈ {a, b, c}. Clearly, νx �= ν0 (for any x ∈ {a, b, c}) because otherwise we can derive a transition system which con-
tains choices of a, b or b, c or a, c. For instance, if νa = ν0 then the transfer property of product derivation ensures that
∃q pb

a−→ q because νa = ν0 � θb . Therefore, let ia, ib, ic ∈ I be the unique elements such that for every x ∈ {a, b, c} we have
νx(ix) �= ν0(ix) ∧ ∀i �=ix νx(i) = ν0(i) (recall Condition (7)(2)).

Next, we show that if ia �= ic ∧ ib �= ic ∧ ia �= ib then we can derive a product which has a choice between a, c. Since ia, ib
are the only elements whose values are changed by νa, νb , so from Condition (7)(3) we have ν0(ia) = ν0(ib) =?. Define a
function θ ′c as follows:

θ ′c(i)=

⎧⎪⎨
⎪⎩

θc(i) if i �= ia ∧ i �= ib,
θa(i) if i = ia,
R if i = ib ∧ θb(ib)= L,
L if i = ib ∧ θb(ib)= R.

Next, we show that νc � θ ′c . If i �= ia ∧ i �= ib then clearly νc(i) � θ ′c(i) because θ ′c(i) = θc(i). If i = ia or i = ib then νc(i) =
ν0(i) =?. Thus, νc(i) � θ ′c(i). Thus, νc � θ ′c .

Next, we show that νa � θ ′c . If i �= ia ∧ i �= ib then νa(i) = ν0(i). Thus, νa(i) � θ ′c(i) because ν0(i) � θc(i) ∧ θc(i) = θ ′c(i). If
i �= ia ∧ i = ib then νa(i) = ν0(i) =?. Thus, νa(i) � θ ′c(i). Lastly, if i = ia then νa(i) � θ ′c(i) because θ ′c(i) = θa(i). Thus, νa � θ ′c .
As a result, we can derive a product that contains a choice between a, c by using θ ′c ; however, such a product is clearly not
a valid product of the given FTS P as it violates the condition �.

On the other hand, if ia = ic then we show that using θb we can derive a product which has a choice between either a, b
or b, c. It suffices to show that νa(ia) � θb(ia) or νc(ia) � θb(ia) because for every i �= ia we have νa(i) = νc(i) = ν0(i) � θb(i).
We claim that νa(ia) �=?. Suppose otherwise νa(ia) =?. Then, since ia = ic we find νa � θc . As a result, from the transfer
property of �θc there must be a q such that pc a−→ q otherwise E(P) �θc pc . Thus, νa(ia) �=?. Likewise, we can prove that
νc(ia) �=?. Thus, νa(ia), νc(ia) ∈ {L, R}. And since θb is a function whose co-domain is the set {L, R} we have either νa(ia) �
θb(ia) or νc(ia) � θb(ia). Hence, we can derive a product that contains a choice between either a, b or b, c by using θb;
however, such a product is clearly not a valid product of the given FTS P as it violates the condition �. Likewise, if ib = ic

52 H. Beohar et al. / Science of Computer Programming 123 (2016) 42–60

Fig. 6. An FTS (left) that cannot be encoded as an MTS.

(or ia = ib) then we can show that using θa (θc) we can derive a product which has a choice between either a, b (a, c) or
a, c (b, c). �

We can hence summarize the results of this section by the following diagram:

MTSs −→ PL-LTSs −→ FTSs,

where the arrow −→ indicates the “less-expressive-than” relation, i.e., the existence of an encoding from one product line
structure into another and the lack of encoding in the other directions. In other words, the class of MTSs (FTSs) is the
least (most) expressive product line structure considered in this paper. The fact that MTSs are less expressive than FTSs
follows from the transitivity of the “less-expressive-than” relation; to emphasize this fact, we give the evidence of the lack
of encoding from FTSs to MTSs in the following example.

Example 8. Consider the FTS drawn (left) in Fig. 6 with the set of features F = { f , f ′} and the set of valid product con-
figuration � = {λ, λ′} with λ(f) =�, λ(f ′) =⊥ and λ′(f) =⊥, λ′(f ′) =�. The transition systems of the derived processes
P and Q under λ and λ′ , respectively, are drawn in Fig. 6. Now by contradiction we show that there is no encoding E
satisfying Definition 11.

Suppose there is an encoding E satisfying Definition 11. Clearly, P �λ p and P �λ′ q. Then by correctness of E we have
E(P) p and E(P) q. Thus, we can derive the following transitions (for some modal states Pa, Pb) from the transfer
property of modal refinement:

E(P)
a−→♦ Pa E(P)

b−→♦ Pb.

Therefore, there exists a state r of the following form: r a−→ r′ and r b−→ r′′ (for some r′, r′′) such that E(P) r. And by
correctness of E we get P �λ r or P �λ′ r. However, P �λ r and P �λ′ r.

4. Testing pre-orders for SPLs

In Section 2, we reviewed three different notions of product derivations based on a particular product line structure.
These notions are intensional in nature, i.e., they require the products to be modeled completely as LTSs, and moreover,
their models must be available in their entirety during testing. This assumption is rather unrealistic for practical systems. In
practice, one needs an extensional notion of testing that can be used to generate a test-suite from a product-line specifica-
tion (e.g., an MTS) in an offline or on-the-fly manner, in order to test a black-box implementation. Based on the foundational
studies carried out in [22,21,20], such notions have been developed and extensively studied for various LTS-based formalisms
[22,34]; however, we are not aware of any such notion for MTSs, PL-LTSs, and FTSs (the only exceptions being our recent
work [35,36], as well as the recent work by Devroey et al. [37,38]). In the remainder of this section, we adopt the test-
ing framework of [23] and adapt its notion of test to MTSs, PL-LTSs, and FTSs to characterize the corresponding product
derivation relation for the respective product-line structure.

The notions elaborated in this section lay the theoretical connection between the intensional (trace-based comparison)
and the extensional (test-case execution) notions of conformance. In order to turn this theory into a practical testing scheme,
some degrees of unboundedness have to be tamed: firstly, a fault-model (regarding the implementation) [39], a notion of
coverage [37], or a test-selection algorithm [40] has to be adopted to choose a finite set of test cases. Moreover, some
assumptions about valid products and the interaction of their features (combined with the aforementioned methods or a
bound on the maximum length of test-cases) can be used to select a finite set of incremental test-suites for various products
[35,36].

4.1. Modal refinement as a testing pre-order

Consider a set of test expressions T , ranged over by t , generated by the following grammar [23]3:

t ::= SUCC | FAIL | at | ãt | t1 ∧ t2 | t1 ∨ t2 | ∀t | ∃t.

3 Throughout this section, we assume that the product line structure under investigation is image finite.

H. Beohar et al. / Science of Computer Programming 123 (2016) 42–60 53

SUCC ‖ P →� (1) FAIL ‖ P →⊥ (2)
P a−→� P ′

at ‖ P → t ‖ P
(3)

�P ′ P a−→� P ′

at ‖ P →⊥ (4)

P a−→♦ P ′

ãt ‖ P → t ‖ P
(5)

�P ′ P a−→♦ P ′

ãt ‖ P →� (6) (t1 ∧ t2) ‖ P → (t1 ‖ P)∧ (t2 ‖ P) (7)

E1 → E ′1 E2 → E ′2
E1 ∧ E2 → E ′1 ∧ E ′2

(8) �∧ E → E (9) ⊥∧ E →⊥ (10) E ∧�→ E (11)

E ∧⊥→⊥ (12) (t1 ∨ t2) ‖ P → (t1 ‖ P)∨ (t2 ‖ P) (13)
E1 → E ′1 E2 → E ′2
E1 ∨ E2 → E ′1 ∨ E ′2

(14)

�∨ E →� (15) ⊥∨ E → E (16) E ∨�→� (17) E ∨⊥→ E (18)

∀t ‖ P →∀(t ‖ P) (19) ∀⊥→⊥ (20) ∀�→� (21)
δ(E)= {E1, · · · , En}

∀E →
n∧

i=1

∀Ei

(22)

∃t ‖ P →∃(t ‖ P) (23) ∃⊥→⊥ (24) ∃�→� (25)
δ(E)= {E1, · · · , En}

∃E →
n∨

i=1

∃Ei

(26)

Fig. 7. Operational interpretation of test experiments.

Intuitively, SUCC and FAIL denote the successful and the failed tests, respectively, i.e., for every MTS the test SUCC (FAIL)
will always pass (fail). The expression at tests the existence of a must-transition labeled a and then examines the sub-test
t . Furthermore, if an MTS refuses to perform the must-transition a, the verdict for this test is fail. The expression ãt tests
the existence of a may-transition labeled a and then examines the sub-test t . Furthermore, if an MTS refuses to perform the
may-transition a, then the verdict for this test is success (pass). The tests of the form t1 ∧ t2 and t1 ∨ t2 represent testing
different copies of a machine using the sub-tests and subsequently, combining the results [20]. The tests of the form ∀t and
∃t represent global testing by, respectively, quantifying universally and existentially over runs of sub-test t .

Given a modal specification P and an implementation p (modeled as an LTS), the main idea is to assert indirectly
whether the implementation p is a valid product of the specification P , i.e., whether they are related by a modal refinement
relation. (Throughout this section, we use P to denote a state of a modal specification and p to denote the state of an LTS
implementation.) For this purpose, we need a concept of interaction between a test case and a state in an MTS (and an
LTS). To this end, we recall the notion of experiment expression E [23], generated by the following grammars:

E ::= � | ⊥ | (t ‖ P) | E1 ∧ E2 | E1 ∨ E2 | ∀E | ∃E.

E ::= � | ⊥ | (t ‖ p) | E1 ∧ E2 | E1 ∨ E2 | ∀E | ∃E .

Fig. 7 provides the operational interpretation of experiment expressions over an MTS. Note that only the rules of the ex-
pressions at ‖ P and ãt ‖ P (i.e., rules 3–6) are modified with respect to the original rules presented in [23], while the rest
of the operational rules are quoted verbatim for the sake of completeness. In particular, we define a transition relation →
between any two experiment expressions as the smallest relation satisfying the rules of Fig. 7. Note that we do not need a
separate set of rules to specify the experiment expressions interacting with an LTS, because they can also be derived from
the rules of Fig. 7 by considering the transitions of LTS as both may and must transitions.

Once we have a transition system whose states are experiment expressions interacting with either a specification or
an implementation, we can use this structure to define the set of results of evaluating a test on a process. The outcome
of a single test is either successful or unsuccessful, which can be modeled as a two-point domain O = ⊥ ≤ �. However,
due to nondeterminism, sets of outcomes are required to get the results of all possible runs (cf. [23]). These outcomes are
modeled using a set of truth values (or more precisely, using the Plotkin powerdomain P[O] = {⊥} � {⊥, �} � {�}). The
semantics of the operators ∧, ∨, ∀, ∃ over the Plotkin powerdomain P[O] can be found in [23]. In addition, given an MTS
(P, A, −→♦, −→�), we define the function O : T × P →P[O] in the following way:

O (t, P)= {� | (t ‖ P)−↠�} ∪ {⊥ | (t ‖ P)−↠⊥},

54 H. Beohar et al. / Science of Computer Programming 123 (2016) 42–60

where −↠ is the reflexive and transitive closure of the transition relation → defined in Fig. 7. Similar to the operational
semantics, we re-use the same notation to denote the result of executing a test expression of a test on an LTS, i.e., for an
LTS (P, A, →), we write O (t, p) to denote the results of executing test t on p.

The following property is immediate from the rules of Fig. 7 (in particular, rules 19 and 23) on experiment expressions.

Lemma 3. Let P be a modal specification. Then, for any test expression t we have

O (∀t, P)= ∀O (t, P) and O (∃t, P)= ∃O (t, P).

Before we turn our attention to the characterization of modal refinement as a testing pre-order, we first give a semantic
preserving transformation � �A (Lemma 4) that transforms an HML formulae (interpreted over MTSs due to [41]) into the
set of tests T . We will use this transformation in the proof of Theorem 5 to establish a link between testing pre-order �
and the modal refinement relation .

Consider the set of all HML formulae � generated by the following grammar:

ϕ ::= ⊥ | � | 〈a〉ϕ | [a]ϕ | ϕ ∧ ϕ′ | ϕ ∨ ϕ′.

The semantics of ⊥, �, ∧, ∨ is standard, while the nonstandard semantics of 〈a〉ϕ, [a]ϕ is given as follows [41]:

1. P |
 〈a〉ϕ ⇔ ∃P ′ P a−→� P ′ ∧ P ′ |
 ϕ .
2. P |
 [a]ϕ ⇔ ∀P ′ P a−→♦ P ′ ⇒ P ′ |
 ϕ .

Following [23], we give a transformation �_�A :� → T of HML formulae to the set of test expressions.

���A = SUCC, �⊥�A = FAIL,

�ϕ ∧ ϕ′�A = �ϕ�A ∧ �ϕ′�A, �ϕ ∨ ϕ′�A = �ϕ�A ∨ �ϕ′�A,

�[a]ϕ�A = ∀ã�ϕ�A, �〈a〉ϕ�A = ∃a�ϕ�A.

By setting the above technical machinery, we now prove that an MTS satisfies a HML formula ϕ if and only if it passes
the test �ϕ�A .

Lemma 4. Let P and p be a state in an MTS and an LTS, respectively. Then, for any ϕ ∈� we have

P |
 ϕ ⇔ O (�ϕ�A, P)= {�} and p |
 ϕ ⇔ O (�ϕ�A, p)= {�}.

Proof. The proof is by induction on ϕ; the cases for ⊥, �, ∧, ∨ are straightforward.

1. Let ϕ = [a]ϕ′ and P |
 ϕ . Then,

∀P ′ P
a−→♦ P ′ ⇒ P ′ |
 ϕ′

⇔ ∀P ′ P
a−→♦ P ′ ⇒ O (�ϕ′�A, P ′)= {�} (Induction hypothesis)

⇔ O (ã�ϕ′�A, P)= {�} (Rule 5 and Definition of O)

⇔∀O (ã�ϕ′�A, P)= {�} (Truth-table [23]: ∀{�} = {�})
⇔ O (∀ã�ϕ′�A, P)= {�} (Lemma 3: O (∀t, p)= ∀O (t, P))

⇔ O (�[a]ϕ′�A, P)= {�}.
2. Let ϕ = 〈a〉ϕ′ and P |
 ϕ . Then,

∃P ′ P
a−→� P ′ ∧ P ′ |
 ϕ′

⇔ ∃P ′ P
a−→� P ′ ∧ O (�ϕ′�A, P ′)= {�} (Induction hypothesis)

⇔�∈ O (a�ϕ′�A, P) (Rule 5 and Definition of O)

⇔∃O (a�ϕ′�A, P)= {�} (Truth table [23]: ∃{⊥,�} = {�} and ∃{�} = {�})
⇔ O (∃a�ϕ′�A, P)= {�} (Lemma 3: ∃O (t, p)= O (∃t, p))

⇔ O (�〈a〉ϕ′�A, P)= {�}. �

H. Beohar et al. / Science of Computer Programming 123 (2016) 42–60 55

Fig. 8. A counterexample for the converse of Theorem 5.

Fig. 9. An invalid product for the MTS given in Fig. 2(a).

The following theorem is the first attempt towards characterization; namely, it shows that if the observations obtained
from test-cases on an implementation are all allowed by the product line, then the implementation is a valid product (a
modal refinement) of the product line.

Theorem 5. Let P and p be states in an MTS and an LTS, respectively. Then,

∀t∈T O (t, P)� O (t, p) ⇒ P p.

Proof. Suppose ∀t∈T O (t, P) � O (t, p). In lieu of the modal characterization given by Boudol and Larsen [41, Theo-
rem 3.1], we show that p |
 ϕ whenever P |
 ϕ , for any ϕ ∈ �. Suppose P |
 ϕ . Then, from Lemma 4 we know
that O (�ϕ�A, P)= {�}. Since the element {�} is the maximum in the Plotkin powerdomain P[O] and O (�ϕ�A, P) �
O(�ϕ�A, p) we know that O (�ϕ�A, p) = {�}. From Lemma 4, we conclude that p |
 φ. �

To see why the converse of Theorem 5 does not hold, consider the states P and p given in Fig. 8, where dashed
transitions denote may transitions and solid transitions denote must transitions. The dotted lines show the witnessing
refinement relation between P and p; thus, P p. Consider the test t = ãbSUCC. Clearly, O (t, P) = {⊥, �} and O (t, p) =
{⊥}. However, {⊥, �} �� {⊥}.

Thus, in order to obtain a full characterization of modal refinement, we need to restrict ourselves to the set of test
expressions T ′ ⊆ T generated by the grammar given below.

Corollary 1. Let P and p be states in an MTS and an LTS, respectively. Let T ′ ⊆ T be the set of tests generated by the following grammar:

t ::= SUCC | FAIL | ∃at | ∀ãt | t1 ∧ t2 | t1 ∨ t2.

Then, ∀t∈T ′ O (t, P) � O (t, p) ⇔ P p.

It follows also from Corollary 1 that if an LTS is not a valid product of an MTS, i.e., P � p, then it is sufficient to find a
test t ∈ T such that O (t, P) �� O (t, p). Moreover, for such an invalid product there always exists a test-case, which tells it
apart from the product line.

Example 9. Recall the MTS given in Fig. 2(a) and represent it by P . Consider an LTS given in Fig. 9 and represent it by p.
Observe that by adopting the test t = ∃1d sugar coffee pour sugar pour coffee SUCC we can show that p is not a valid

product of P because O (t, P) = {�} and O (t, p) = {⊥}. Thus {�} �� {⊥}; hence, P � p.

4.2. Testing pre-orders for FTSs and PL-LTSs

Similar to the case of MTSs, we are not aware of any extensional notion of testing for FTSs and PL-LTSs (the product-
derivation relation of the latter is similar to the product-derivation relation of FTSs). To fill in this gap, we modify the testing
framework of MTS (given in the previous section) and show how to characterize our notion of product derivation of an FTS
(PL-LTS) by a testing equivalence.

Recall the set of tests T generated from the grammar given in the previous subsection. We give now an interpretation
of a test t ∈ T over an FTS (P, A, F , →, �). It should not be surprising that only the semantics of the tests of the form at

56 H. Beohar et al. / Science of Computer Programming 123 (2016) 42–60

and ãt needs to be modified, while the semantics of the remaining operators (from Fig. 7) remains unchanged. Formally, we
first define a family of transition relations, parameterized by product configurations, by modifying rules 3–6 in the following
way.

P a−→φ P ′ λ |
 φ

at ‖ P →λ t ‖ P
(3′)

�Q ,φ P a−→φ Q λ |
 φ

at ‖ P →λ ⊥ (4′)

P a−→φ P ′ λ |
 φ

ãt ‖ P →λ t ‖ P
(5′)

�Q ,φ P a−→φ Q λ |
 φ

ãt ‖ P →λ � (6′).

Second, we define the family of observation functions (parameterized by the product configurations) which essentially
evaluates an experiment expression interacting with a specification modeled as an FTS.

Oλ(t, P)= {� | (t ‖ P)−↠λ �} ∪ {⊥ | (t ‖ P)−↠λ ⊥}.
In a similar vein, we also give an interpretation of a test t ∈ T over a PL-LTS (P ×{L, R, ?}I , A, →), where only rules 3–6 are
modified and the remaining operational rules of the operators (except at, ̃at) are unchanged.

(P , ν)
a,ν ′−−−→ (P ′, ν ′) ν ′ � θ

at ‖ (P , ν)→θ t ‖ (P , ν ′)
(3′′)

�Q ,ν ′ (P , ν)
a,ν ′−−−→ (Q , ν ′) ν ′ � θ

at ‖ (P , ν)→θ ⊥ (4′′)

(P , ν)
a,ν ′−−−→ (P ′, ν ′) ν ′ � θ

ãt ‖ (P , ν)→θ t ‖ (P , ν ′)
(5′′)

�Q ,ν ′ (P , ν)
a,ν ′−−−→ (Q , ν ′) ν ′ � θ

ãt ‖ P →θ � (6′′).

Lastly, we define a function O θ : T × (P × {L, R, ?}I) →P[O], parametrized by configuration vectors, as follows:

O θ (t, P , ν)= {� | t ‖ (P , ν)−↠θ �} ∪ {⊥ | t ‖ (P , ν)−↠θ ⊥}.
Just like in the case of MTSs, we have the following lemma.

Lemma 5. Let P be a state in an FTS and let λ be a product configuration. Then, for any test expression t we have

Oλ(∀t, P)= ∀Oλ(t, P) and Oλ(∃t, P)= ∃Oλ(t, P).

Next, we give the main result of this subsection; namely that our notion of test-cases is both sound and complete for
the generalized notion product derivation.

Theorem 6. Let P be an FTS specification, p be state in an LTS, and λ be a product. Then,

P �λ p ⇔ ∀t∈T Oλ(t, P)= O (t, p).

Proof. (⇐) Suppose otherwise, P �λ p and for all tests t , we have Oλ(t, P) = O (t, p). Then we distinguish the following
cases:

1. Either, there exists a, Q such that P a−→φ Q , λ |
 φ, and for all q, if p a−→ q then Q �λ q. Let p(a) = {q | p a−→ q}. Due to
image finiteness assumption we know that the set p(a) is finite. We identify the following cases:
(a) Suppose p(a) = ∅. Then,

�∈ Oλ(aSUCC, P) (∵ P
a,φ−−→ Q ∧ λ |
 φ)

⇒∃Oλ(aSUCC, P)= {�} (Truth table of ∃)
⇒ Oλ(∃aSUCC, P)= {�} (Lemma 5: Oλ(∃t, s)= ∃Oλ(t, s)).

But, O (aSUCC, p) = {⊥}; thus,

O (aSUCC, p)= ∃O (aSUCC, p)= O (∃aSUCC, p)= {⊥}.
Hence, a contradiction follows.

(b) Suppose p(a) = {q1, · · · , qn}. Then, by induction hypothesis there exists sub-tests t1, · · · , tn such that Oλ(ti, Q) �=
O (ti, qi).

H. Beohar et al. / Science of Computer Programming 123 (2016) 42–60 57

i. Either, Oλ(ti, Q) = {�} ∧ O (ti, qi) = {⊥}. Let t′ = t1 ∧ · · · ∧ tn . Consequently,

�∈ Oλ(at
′, P) (∵ Oλ(ti, Q)= {�})

⇒∃Oλ(at
′, P)= {�} (Truth table of ∃)

⇒ Oλ(∃at′, P)= {�} (Lemma 5: Oλ(∃t, P)= ∃Oλ(t, P)).

But,

O (at′, p)= {⊥} (∵ O (ti,qi)= {⊥})
⇒∃O (at′, p)= {⊥} (Truth table: ∃{⊥} = {⊥})
⇒ O (∃at′, p)= {⊥} (O (∃t, p)= ∃O (t, p) [23]).

Hence, a contradiction.
ii. Or, Oλ(ti, Q) = {⊥} ∧ O (ti, qi) = {�}. Let t′ = t1 ∨ · · · ∨ tn . Consequently,

⊥∈ Oλ(at
′, Q) (∵ Oλ(ti, Q)= {⊥})

⇒∀Oλ(at
′, Q)= {⊥} (Truth table of ∀)

⇒ Oλ(∀at′, Q)= {⊥} (Lemma 5: Oλ(∀t, Q)= ∀Oλ(t, Q)).

Furthermore,

O (at′, p)= {�} (since O (t′i,qi)= {�})
⇒∀O (at′, p)= {�} (∀{�} = {�})
⇒ O (∀at′, p)= {�}.

Hence, a contradiction.
2. Or, there exists a, q such that p a−→ q and for all Q , φ, if P a−→φ Q ∧ λ |
 φ, then Q �λ q. Due to image finiteness

assumption, we know that the set P (a) = {Q | ∃φ P a−→φ Q ∧ λ |
 φ} is finite.
(a) Suppose P (a) = ∅. Then,

Oλ(ãFAIL, P)= {�} (∵ P (a)= ∅)

⇒∀Oλ(ãFAIL, P)= {�} (Truth table: ∀{�} = {�})
⇒ Oλ(∀ãFAIL, P)= {�} (Lemma 5: ∀Oλ(t, P)= Oλ(∀t, P)).

But, O (ãFAIL, p) = {⊥} (since p a−→ q, O (FAIL, q) = {⊥}). Thus, O (∀ã, p) = ∀O (ãFAIL, p) = {⊥}, which is a contradic-
tion.

(b) Suppose P (a) = {Q 1, · · · , Qn}. Then, by induction hypothesis there exists sub-tests t1, · · · , tn such that Oλ(ti, Q i) �=
O (ti, q).
i. Either Oλ(ti, Q i) = {�} and O (ti, q) = {⊥}. Let t′ = t1 ∨ · · · ∨ tn . Then, from truth table of ∨ we have

Oλ(t′, Q i)= {�}. Consequently,
Oλ(ãt

′, P)= {�} (∵ Oλ(t
′, Q i)= {�})

⇒∀Oλ(ãt
′, P)= {�} (Truth table: ∀{�} = {�})

⇒ Oλ(∀ãt′, P)= {�} (Lemma 5: ∀Oλ(t, P)= Oλ(∀t, P)).

Furthermore, O (t′, q) = O (t1, q) ∨ · · · ∨ O (tn, q) = {⊥}. Thus,
⊥∈ O (ãt′, p)

⇒∀O (ãt′, p)= {⊥} (Truth table of ∀)

⇒ O (∀ãt′, p)= {⊥} (∀O (t, p)= O (∀t, p) [23]).

Hence, a contradiction.
ii. Or Oλ(ti, Q i) = {⊥} and O (ti, q′) = {�}. Let t′ = t1 ∧ · · · ∧ tn . Then, Oλ(t′, Q i) = {⊥}. Consequently,

Oλ(ãt
′, P)= {⊥} (since Oλ(t

′, Q i)= {⊥})
⇒∃Oλ(ãt

′, P)= {⊥} (∃{⊥} = {⊥})
⇒ Oλ(∃ãt′, P)= {⊥}.

58 H. Beohar et al. / Science of Computer Programming 123 (2016) 42–60

Furthermore, O (t′, q) = O (t1, q) ∧ · · · ∧ O (tn, q) = {�}. Thus,

�∈ O (ãt′, p) (since O (t′,q)= {�})
⇒∃O (ãt′, p)= {�} (Truth table of ∃)
⇒ O (∃ãt′, p)= {�} (∃O (t, p)= O (∃t, p) [23]).

Hence, a contradiction follows.

(⇒) Suppose P �λ p. We show by induction on t that Oλ(t, P) = O (t, p). The cases when t = SUCC, FAIL, t1 ∨ t2, t1 ∧
t2, ∀t′, ∃t′ are straightforward. The interesting cases are the following:

1. Let t = at′ .
(a) Let � ∈ Oλ(at′, P). Then,

P a−→φ Q ∧ λ |
 φ ∧� ∈ Oλ(t
′, Q) for some φ, Q

⇒ p a−→ q (∵ P �λ p)

⇒�∈ Oλ(t
′, Q)⇒�∈ O (t′,q) (Induction hypothesis)

⇒�∈ O (at′, p).

(b) Let ⊥ ∈ Oλ(at′, P). Then we have the following cases:
i. Either P a−→φ Q ∧ λ |
 φ ∧⊥ ∈ Oλ(t′, Q), for some Q , φ. Similar to Case (a).
ii. Or, �Q ,φ P a−→φ Q ∧ λ |
 φ. Then, Oλ(at′, P) = {⊥}. Suppose otherwise, � ∈ O (at′, p). Then, ∃q p a−→ q. But,

P �λ p. Thus, ∃Q ,φ P a−→φ Q ∧ λ |
 φ, which is a contradiction.
(c) Let � ∈ O (at′, p). Similar to Case (a).
(d) Let ⊥ ∈ O (at′, p). Similar to Case (b).

2. Let t = ãt′ . Similar to the Case (1). �
Furthermore, it follows from Lemma 1 that the notion of test cases remains sound and complete for the traditional

notion of product derivation.

Theorem 7. Let (P , ν) be a state in a PL-LTS, p be state in an LTS, and θ be a configuration vector. Then,

(P , ν) �θ p ⇔ ∀t∈T O θ (t, P , ν)= O (t, p).

Proof. Similar to the proof of Theorem 6. �
5. Conclusions

In this paper, we studied three fundamental behavioral models for software product lines, namely, modal transition sys-
tems, featured transition systems, and product-line labeled transition systems. In particular, we studied the expressiveness
of these models by comparing their sets of definable products, which are assumed to be expressible as labeled transition
systems. We have shown that modal transition systems are the least expressive of all three, featured transition systems are
the most expressive, and product-line labeled transition systems are strictly in between the two. Then we moved to define
extensional notions of product derivation and adapted the notion of tests by Abramsky to this end. We proved that the
intensional notions of product derivation coincide with the extensional notions defined in this paper for each and every
formalism.

Compositionality (pre-congruence) is well-studied for modal refinement in the context of MTSs [24]. However, this prob-
lem is understudied for FTSs and this is a high priority item in our future-research agenda. We envisage that using the
divide and congruence approach of [42,43] could provide a solution in this regard (see [44] for our initial attempt in this
direction). Another important topic in this area is defining a closed and finite notion of test-cases that can detect all faults,
given a fault model (e.g., similar to the W-Method in FSM-based testing [39]). A third area of research, which builds upon
the previously-mentioned topic, is to define an incremental procedure for testing different products of a product line.

A few other proposals for transition-system-based specifications of SPLs have been proposed that deserve further inves-
tigation. In [10,11], (Generalized) Extended Modal Transition Systems (GEMTSs) have been introduced in order to specify
SPLs. These are variants of disjunctive normal forms [45]. We conjecture that this formalism is strictly in between MTSs and
FTSs in terms of expressiveness. Also, in [19], a multi-modal semantics for “Variant Process Algebra” has been introduced,
which we conjecture, is as expressive as featured transition systems. We leave proving these conjectures, as well as devising
the appropriate extensional notion of testing for GEMTSs for future work.

H. Beohar et al. / Science of Computer Programming 123 (2016) 42–60 59

References

[1] I. Schaefer, R. Rabiser, D. Clarke, L. Bettini, D. Benavides, G. Botterweck, A. Pathak, S. Trujillo, K. Villela, Software diversity: state of the art and
perspectives, Int. J. Softw. Tools Technol. Transf. 14 (5) (2012) 477–495.

[2] A. Classen, Modelling with FTS: a collection of illustrative examples, tech. rep. P-CS-TR SPLMC-00000001, University of Namur, 2010.
[3] K. Schmid, R. Rabiser, P. Grünbacher, A comparison of decision modeling approaches in product lines, in: Proceedings of the International Workshop

on Variability Modelling of Software-Intensive Systems, VaMoS ’11, ACM, 2011, pp. 119–126.
[4] K. Czarnecki, P. Grünbacher, R. Rabiser, K. Schmid, A. Wasowski, Cool features and tough decisions: a comparison of variability modeling approaches,

in: Proceedings of the 6th International Workshop on Variability Modelling of Software-Intensive Systems, VaMoS ’12, ACM, 2012, pp. 173–182.
[5] M. Sinnema, S. Deelstra, Classifying variability modeling techniques, Inf. Softw. Technol. 49 (7) (2007) 717–739.
[6] D. Fischbein, S. Uchitel, V. Braberman, A foundation for behavioural conformance in software product line architectures, in: Proceedings of the ISSTA

Workshop on Role of Software Architecture for Testing and Analysis, ACM, 2006, pp. 39–48.
[7] P. Asirelli, M.H. ter Beek, S. Gnesi, A. Fantechi, Formal description of variability in product families, in: Proceedings of the 15th International Software

Product Line Conference, SPLC ’11, IEEE, 2011, pp. 130–139.
[8] P. Asirelli, M.H. ter Beek, A. Fantechi, S. Gnesi, A model-checking tool for families of services, in: Proc. on Formal Techniques for Distributed Systems,

Springer, 2011, pp. 44–58.
[9] P. Asirelli, M.H. ter Beek, A. Fantechi, S. Gnesi, A compositional framework to derive product line behavioural descriptions, in: Proceedings of the 5th

International Symposium on Leveraging Applications of Formal Methods, Verification and Validation. Technologies for Mastering Change, ISoLA ’12, in:
Lecture Notes in Computer Science, vol. 7609, Springer, 2012, pp. 146–161.

[10] A. Fantechi, S. Gnesi, A behavioural model for product families, in: Proceedings of the 6th Joint Meeting of the European Software Engineering Confer-
ence and the ACM SIGSOFT Symposium on the Foundations of Software Engineering, ESEC–FSE ’07, ACM, 2007, pp. 521–524.

[11] A. Fantechi, S. Gnesi, Formal modeling for product families engineering, in: Proceedings of the 12th International of Software Product Line Conference,
SPLC ’08, 2008, pp. 193–202.

[12] M. Lochau, J. Kamischke, Parameterized preorder relations for model-based testing of software product lines, in: Proceedings of the 5th Symposium on
Leveraging Applications of Formal Methods, Verification and Validation: Technologies for Mastering Change, ISoLA ’12, in: Lecture Notes in Computer
Science, vol. 7609, Springer, 2012, pp. 223–237.

[13] K.G. Larsen, U. Nyman, A. Wąsowski, Modal I/O automata for interface and product line theories, in: R.D. Nicola (Ed.), Proceedings of the 16th European
Symposium on Programming Languages and Systems, 16th European Symposium on Programming, ESOP ’07, in: Lecture Notes in Computer Science,
vol. 4421, Springer, 2007, pp. 64–79.

[14] A. Classen, P. Heymans, P.-Y. Schobbens, A. Legay, J.-F. Raskin, Model checking lots of systems: efficient verification of temporal properties in software
product lines, in: Proceedings of the 32nd International Conference on Software Engineering, vol. 1, ICSE ’10, ACM, 2010, pp. 335–344.

[15] A. Classen, M. Cordy, P.-Y. Schobbens, P. Heymans, A. Legay, J.-F. Raskin, Featured transition systems: foundations for verifying variability-intensive
systems and their application to LTL model checking, IEEE Trans. Softw. Eng. 39 (8) (2013) 1069–1089, http://dx.doi.org/10.1109/TSE.2012.86.

[16] M. Cordy, P.-Y. Schobbens, P. Heymans, A. Legay, Beyond boolean product-line model checking: dealing with feature attributes and multi-features, in: D.
Notkin, B.H.C. Cheng, K. Pohl (Eds.), Proceedings of the 35th International Conference on Software Engineering, ICSE ’13, IEEE/ACM, 2013, pp. 472–481.

[17] A. Gruler, M. Leucker, K. Scheidemann, Modeling and model checking software product lines, in: Proceedings of the Conference on Formal Methods for
Open Object-Based Distributed Systems, FMOODS ’08, in: Lecture Notes in Computer Science, vol. 5051, Springer, 2008, pp. 113–131.

[18] M.H. ter Beek, A. Lluch-Lafuente, M. Petrocchi, Combining declarative and procedural views in the specification and analysis of product families, in:
Proceedings of the 17th International Software Product Line Conference Co-Located Workshops, SPLC ’13 Workshops, ACM, 2013, pp. 10–17.

[19] M. Tribastone, Behavioral relations in a process algebra for variants, in: S. Gnesi, A. Fantechi, P. Heymans, J. Rubin, K. Czarnecki, D. Dhungana (Eds.),
Proceedings of the 18th International Software Product Line Conference, SPLC ’14, ACM, 2014, pp. 82–91.

[20] R. De Nicola, M. Hennessy, Testing equivalences for processes, Theor. Comput. Sci. 34 (1–2) (1984) 83–133.
[21] I. Phillips, Refusal testing, Theor. Comput. Sci. 50 (1987) 241–284.
[22] J. Tretmans, Model based testing with labeled transition systems, in: Formal Methods and Testing, in: Lecture Notes in Computer Science, vol. 4949,

Springer, 2008, pp. 1–38.
[23] S. Abramsky, Observation equivalence as a testing equivalence, Theor. Comput. Sci. 53 (2–3) (1987) 225–241.
[24] K. Larsen, B. Thomsen, A modal process logic, in: Proc. of the 3rd Annual Symposium on Logic in Computer Science, LICS ’88, IEEE, 1988, pp. 203–210.
[25] R. Milner, A Calculus of Communicating Systems, Springer, 1982.
[26] S. Shoham, O. Grumberg, Multi-valued model checking games, J. Comput. Syst. Sci. 78 (2) (2012) 414–429.
[27] T. Kahsai, M. Roggenbach, B.-H. Schlingloff, Specification-based testing for software product lines, in: Proceedings of the 6th International Conference

on Software Engineering and Formal Methods, SEFM ’08, IEEE, 2008, pp. 149–158.
[28] S. Mishra, Specification based software product line testing: a case study, in: Concurrency, Specification and Programming, 2006, pp. 243–254.
[29] M.H. ter Beek, E.D. Vink, Using mCRL2 for the analysis of software product lines, in: S. Gnesi, N. Plat (Eds.), Proceedings of the 2nd FME Workshop on

Formal Methods in Software Engineering, FormaliSE ’14, ACM, 2014, pp. 31–37.
[30] R. Muschevici, J. Proença, D. Clarke, Feature Petri nets, in: G. Botterweck, S. Jarzabek, T. Kishi, J. Lee, S. Livengood (Eds.), Proceedings of the International

Conference on Software Product Lines Workshops, SPLC Workshops ’10, Lancaster University, 2010, pp. 99–106.
[31] R. Muschevici, J. Proença, D. Clarke, Modular modelling of software product lines with feature nets, in: Proceedings of the 9th International Conference

on Software Engineering and Formal Methods, SEFM ’11, in: Lecture Notes in Computer Science, vol. 7041, Springer, 2011, pp. 318–333.
[32] P.-Y. Schobbens, P. Heymans, J.-C. Trigaux, Feature diagrams: a survey and a formal semantics, in: Proceedings of the 14th IEEE International Conference

on Requirements Engineering, RE ’06, IEEE, 2006, pp. 136–145.
[33] D. Park, Concurrency and automata on infinite sequences, in: Proceedings of the 5th GI-Conference on Theoretical Computer Science, Springer-Verlag,

London, UK, 1981, pp. 167–183.
[34] R.M. Hierons, J.P. Bowen, M. Harman (Eds.), Formal Methods and Testing: An Outcome of the FORTEST Network, Revised Selected Papers, Lecture Notes

in Computer Science, vol. 4949, Springer, 2008.
[35] H. Beohar, M.R. Mousavi, Spinal test suites for software product lines, in: Proceedings of the 9th Workshop on Model-Based Testing, MBT 2014,

Electron. Proc. Theor. Comput. Sci. 141 (2014) 44–55.
[36] H. Beohar, M.R. Mousavi, Input-output conformance testing based on featured transition systems, in: Proceedings of the 29th ACM Symposium on

Applied Computing, Software Verification and Testing Track, SAC–SVT 2014, ACM Press, 2014, pp. 1272–1278.
[37] X. Devroey, G. Perrouin, A. Legay, M. Cordy, P. Schobbens, P. Heymans, Coverage criteria for behavioural testing of software product lines, in: T.

Margaria, B. Steffen (Eds.), Proceedings of the 6th International Symposium on Leveraging Applications of Formal Methods, Verification and Validation.
Technologies for Mastering Change, ISoLA ’14, in: Lecture Notes in Computer Science, vol. 8802, Springer, 2014, pp. 336–350.

[38] X. Devroey, G. Perrouin, P. Schobbens, Abstract test case generation for behavioural testing of software product lines, in: S. Gnesi, A. Fantechi, M.H. ter
Beek, G. Botterweck, M. Becker (Eds.), Proceedings of the 18th International Software Product Lines Conference – Companion Volume for Workshop,
Tools and Demo Papers, SPLC Workshops ’14, ACM, 2014, pp. 86–93.

http://refhub.elsevier.com/S0167-6423(15)00128-8/bib536368616566657232303132s1
http://refhub.elsevier.com/S0167-6423(15)00128-8/bib536368616566657232303132s1
http://refhub.elsevier.com/S0167-6423(15)00128-8/bib436C617373656E3230313062s1
http://refhub.elsevier.com/S0167-6423(15)00128-8/bib5363686D696432303131s1
http://refhub.elsevier.com/S0167-6423(15)00128-8/bib5363686D696432303131s1
http://refhub.elsevier.com/S0167-6423(15)00128-8/bib437A61726E65636B693A32303132s1
http://refhub.elsevier.com/S0167-6423(15)00128-8/bib437A61726E65636B693A32303132s1
http://refhub.elsevier.com/S0167-6423(15)00128-8/bib53696E6E656D613A32303037s1
http://refhub.elsevier.com/S0167-6423(15)00128-8/bib46697363686265696E3A323030363A636F6E666F726D616E6365s1
http://refhub.elsevier.com/S0167-6423(15)00128-8/bib46697363686265696E3A323030363A636F6E666F726D616E6365s1
http://refhub.elsevier.com/S0167-6423(15)00128-8/bib41736972656C6C693A323031313A636F6D70667473s1
http://refhub.elsevier.com/S0167-6423(15)00128-8/bib41736972656C6C693A323031313A636F6D70667473s1
http://refhub.elsevier.com/S0167-6423(15)00128-8/bib41736972656C6C693A323031313A6D636865636B2D7365727669636573s1
http://refhub.elsevier.com/S0167-6423(15)00128-8/bib41736972656C6C693A323031313A6D636865636B2D7365727669636573s1
http://refhub.elsevier.com/S0167-6423(15)00128-8/bib41736972656C6C693A323031323A636F6D706F736974696F6E616Cs1
http://refhub.elsevier.com/S0167-6423(15)00128-8/bib41736972656C6C693A323031323A636F6D706F736974696F6E616Cs1
http://refhub.elsevier.com/S0167-6423(15)00128-8/bib41736972656C6C693A323031323A636F6D706F736974696F6E616Cs1
http://refhub.elsevier.com/S0167-6423(15)00128-8/bib46616E746563686932303037s1
http://refhub.elsevier.com/S0167-6423(15)00128-8/bib46616E746563686932303037s1
http://refhub.elsevier.com/S0167-6423(15)00128-8/bib46616E746563686932303038s1
http://refhub.elsevier.com/S0167-6423(15)00128-8/bib46616E746563686932303038s1
http://refhub.elsevier.com/S0167-6423(15)00128-8/bib4C6F636861753A323031323A706172616D65746572697365647072656F726465722D73706Cs1
http://refhub.elsevier.com/S0167-6423(15)00128-8/bib4C6F636861753A323031323A706172616D65746572697365647072656F726465722D73706Cs1
http://refhub.elsevier.com/S0167-6423(15)00128-8/bib4C6F636861753A323031323A706172616D65746572697365647072656F726465722D73706Cs1
http://refhub.elsevier.com/S0167-6423(15)00128-8/bib4C617273656E3A323030373A4D4941s1
http://refhub.elsevier.com/S0167-6423(15)00128-8/bib4C617273656E3A323030373A4D4941s1
http://refhub.elsevier.com/S0167-6423(15)00128-8/bib4C617273656E3A323030373A4D4941s1
http://refhub.elsevier.com/S0167-6423(15)00128-8/bib436C617373656E3A323031303A6C6F7473s1
http://refhub.elsevier.com/S0167-6423(15)00128-8/bib436C617373656E3A323031303A6C6F7473s1
http://dx.doi.org/10.1109/TSE.2012.86
http://refhub.elsevier.com/S0167-6423(15)00128-8/bib436F7264793A323031333A6D756C74696665617475726573s1
http://refhub.elsevier.com/S0167-6423(15)00128-8/bib436F7264793A323031333A6D756C74696665617475726573s1
http://refhub.elsevier.com/S0167-6423(15)00128-8/bib4772756C65723A323030383A504C2D636373s1
http://refhub.elsevier.com/S0167-6423(15)00128-8/bib4772756C65723A323030383A504C2D636373s1
http://refhub.elsevier.com/S0167-6423(15)00128-8/bib7465724265656B4C503133s1
http://refhub.elsevier.com/S0167-6423(15)00128-8/bib7465724265656B4C503133s1
http://refhub.elsevier.com/S0167-6423(15)00128-8/bib547269626173746F6E653134s1
http://refhub.elsevier.com/S0167-6423(15)00128-8/bib547269626173746F6E653134s1
http://refhub.elsevier.com/S0167-6423(15)00128-8/bib44654E69636F6C613A313938343A74657374696E67s1
http://refhub.elsevier.com/S0167-6423(15)00128-8/bib5068696C6C6970733837s1
http://refhub.elsevier.com/S0167-6423(15)00128-8/bib547265746D616E733038s1
http://refhub.elsevier.com/S0167-6423(15)00128-8/bib547265746D616E733038s1
http://refhub.elsevier.com/S0167-6423(15)00128-8/bib416272616D736B793A313938373A4F4554s1
http://refhub.elsevier.com/S0167-6423(15)00128-8/bib4C617273656E3A313938383A6D7473s1
http://refhub.elsevier.com/S0167-6423(15)00128-8/bib4D696C6E65723A313938323A434353s1
http://refhub.elsevier.com/S0167-6423(15)00128-8/bib53686F68616D32303132s1
http://refhub.elsevier.com/S0167-6423(15)00128-8/bib4B616873616932303038s1
http://refhub.elsevier.com/S0167-6423(15)00128-8/bib4B616873616932303038s1
http://refhub.elsevier.com/S0167-6423(15)00128-8/bib4D697368726132303036s1
http://refhub.elsevier.com/S0167-6423(15)00128-8/bib646556696E6B2D4265656B2D53504C3134s1
http://refhub.elsevier.com/S0167-6423(15)00128-8/bib646556696E6B2D4265656B2D53504C3134s1
http://refhub.elsevier.com/S0167-6423(15)00128-8/bib4D75736368657669636932303130s1
http://refhub.elsevier.com/S0167-6423(15)00128-8/bib4D75736368657669636932303130s1
http://refhub.elsevier.com/S0167-6423(15)00128-8/bib4D75736368657669636932303131s1
http://refhub.elsevier.com/S0167-6423(15)00128-8/bib4D75736368657669636932303131s1
http://refhub.elsevier.com/S0167-6423(15)00128-8/bib5363686F6262656E733A32303036s1
http://refhub.elsevier.com/S0167-6423(15)00128-8/bib5363686F6262656E733A32303036s1
http://refhub.elsevier.com/S0167-6423(15)00128-8/bib5061726B3A313938313A4341492D626973696Ds1
http://refhub.elsevier.com/S0167-6423(15)00128-8/bib5061726B3A313938313A4341492D626973696Ds1
http://refhub.elsevier.com/S0167-6423(15)00128-8/bib486965726F6E7332303038s1
http://refhub.elsevier.com/S0167-6423(15)00128-8/bib486965726F6E7332303038s1
http://refhub.elsevier.com/S0167-6423(15)00128-8/bib42656F68617231344D4254s1
http://refhub.elsevier.com/S0167-6423(15)00128-8/bib42656F68617231344D4254s1
http://refhub.elsevier.com/S0167-6423(15)00128-8/bib42656F6861723134534143s1
http://refhub.elsevier.com/S0167-6423(15)00128-8/bib42656F6861723134534143s1
http://refhub.elsevier.com/S0167-6423(15)00128-8/bib446576726F6579504C4353483134s1
http://refhub.elsevier.com/S0167-6423(15)00128-8/bib446576726F6579504C4353483134s1
http://refhub.elsevier.com/S0167-6423(15)00128-8/bib446576726F6579504C4353483134s1
http://refhub.elsevier.com/S0167-6423(15)00128-8/bib446576726F657950533134s1
http://refhub.elsevier.com/S0167-6423(15)00128-8/bib446576726F657950533134s1
http://refhub.elsevier.com/S0167-6423(15)00128-8/bib446576726F657950533134s1

60 H. Beohar et al. / Science of Computer Programming 123 (2016) 42–60

[39] A.D.S. Simão, A. Petrenko, Generating complete and finite test suite for ioco: is it possible?, in: H. Schlingloff, A.K. Petrenko (Eds.), Proceedings Ninth
Workshop on Model-Based Testing, MBT ’14, Electron. Proc. Theor. Comput. Sci. 141 (2014) 56–70.

[40] M. Volpato, J. Tretmans, Towards quality of model-based testing in the ioco framework, in: Proceedings of the International Workshop on Joining
Academia and Industry Contributions to testing Automation, JAMAICA ’13, ACM, 2013, pp. 41–46.

[41] G. Boudol, K.G. Larsen, Graphical versus logical specifications, Theor. Comput. Sci. 106 (1) (1992) 3–20.
[42] B. Bloom, W. Fokkink, R.J. van Glabbeek, Precongruence formats for decorated trace semantics, ACM Trans. Comput. Log. 5 (1) (2004) 26–78.
[43] W. Fokkink, R.J. van Glabbeek, P. de Wind, Divide and congruence: from decomposition of modal formulas to preservation of branching and

η-bisimilarity, Inf. Comput. 214 (2012) 59–85.
[44] H. Beohar, M. Mousavi, A precongruence format for XY -simulation, in: Proceedings of the 6th IPM International Conference on Foundations of Software

Engineering, FSEN’15, in: Lecture Notes in Computer Science, Springer, 2015.
[45] K.G. Larsen, L. Xinxin, Equation solving using modal transition systems, in: Proceedings of the Fifth Annual Symposium on Logic in Computer Science,

LICS ’90, IEEE Computer Society, 1990, pp. 108–117.

http://refhub.elsevier.com/S0167-6423(15)00128-8/bib53696D616F3134s1
http://refhub.elsevier.com/S0167-6423(15)00128-8/bib53696D616F3134s1
http://refhub.elsevier.com/S0167-6423(15)00128-8/bib566F6C7061746F3133s1
http://refhub.elsevier.com/S0167-6423(15)00128-8/bib566F6C7061746F3133s1
http://refhub.elsevier.com/S0167-6423(15)00128-8/bib426F75646F6C2D4C617273656E3A313939323A67726170682D6C6F676963616C2D73706563s1
http://refhub.elsevier.com/S0167-6423(15)00128-8/bib426C6F6F6D3034s1
http://refhub.elsevier.com/S0167-6423(15)00128-8/bib466F6B6B696E6B3132s1
http://refhub.elsevier.com/S0167-6423(15)00128-8/bib466F6B6B696E6B3132s1
http://refhub.elsevier.com/S0167-6423(15)00128-8/bib42656F4D6F7531353A4653454Es1
http://refhub.elsevier.com/S0167-6423(15)00128-8/bib42656F4D6F7531353A4653454Es1
http://refhub.elsevier.com/S0167-6423(15)00128-8/bib4C617273656E31393930s1
http://refhub.elsevier.com/S0167-6423(15)00128-8/bib4C617273656E31393930s1

	Basic behavioral models for software product lines: Expressiveness and testing pre-orders
	1 Introduction
	1.1 Motivation
	1.2 Running example
	1.3 Contributions
	1.4 Paper structure

	2 Fundamental behavioral models of SPLs
	2.1 Overview
	2.2 Modal transition systems
	2.2.1 Specifying SPLs
	2.2.2 Deriving products

	2.3 Featured transition systems
	2.3.1 Specifying structural aspects
	2.3.2 Deriving valid products

	2.4 Product line process algebras

	3 Expressiveness results
	4 Testing pre-orders for SPLs
	4.1 Modal reﬁnement as a testing pre-order
	4.2 Testing pre-orders for FTSs and PL-LTSs

	5 Conclusions
	References

