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A B S T R A C T

Different types of plants are used to generate electricity in the US: single-, multi-, and mixed-electricity plants. In
this paper, we question the best type/design of plants for both renewable and non-renewable electricity. To do
so, we suggest a new index that takes the form of a Malmquist productivity index. The specificity of our new
index is that it offers the option to investigate the performances and the causes of the performance changes for
each type of electricity separately; this is not possible when relying on more standard indexes. Moreover, our
new index takes the links between the inputs and the outputs into account, and is nonparametric in nature. Using
our index, we study the performances of more than 5000 plants for the period 2000–2012. Our findings reveal
that single-electricity plants perform better for renewable electricity, while multi-electricity plants perform
better for non-renewable electricity. This is coherent with the decreasing importance of multi-electricity plants
in the US, and the increasing importance of single-electricity plants producing renewable electricity.
Furthermore, our results do not suggest that combining renewable and non-renewable electricity generations
within a plant improves the performance of the plants. Finally, we demonstrate that the reasons for the changes
in performance are different for each type of electricity and plant.

1. Introduction

In the US, there are different types of electricity generation plants
that we can group into three main categories. Firstly, those that pro-
duce only one type of (renewable or non-renewable) electricity. Next,
those that produce more than one type of (renewable or non-renew-
able) electricity. Finally, those that produce both renewable and non-
renewable electricity. The economic motivation to produce more than
one type of electricity may be due to the cost aspect of the production
process. Indeed, it is less costly to produce multiple types of electricity
within a large plant rather than in several small plants. Or in other
words, the plants benefit from economies of scope (such as infra-
structure or knowledge) by producing multiple outputs.1 Improving the
performances of those large plants is therefore an important goal, which
both regulators and managers are trying to achieve.

In this paper, we question the best design of the plants for renew-
able and non-renewable electricity generation. That is, we compare the
three different types of plants and identify the best one. In other words,
we ask the following questions: Is it preferable to have single- or multi-
electricity plants? Should plants focus on the production of renewable
or non-renewable electricity or produce both? Moreover, we are in-
terested in the reasons for the performance differences. We could point

out two main causes: efficiency and technical changes. Efficiency
change reveals how the plants use their current technology to generate
the electricity. Technical change reveals how the plants have succeeded
in the innovation of the production process. Clearly, it is not obvious
that the cause for the performance changes is the same for each type of
electricity production and for every type of plant. The Environmental
Protection Agency in the US has developed a complete and very de-
tailed database for more than 5000 plants for the period 2000–2012.
This represents a unique opportunity to study the performances of
electricity plants in the US, and in particular, to question the design of
the plants.

To answer our questions, we will develop a new nonparametric
technical index and its decomposition into technical and efficiency
changes for multi-output producers. The new technical index takes the
form of a Malmquist productivity index (MPI). Our new MPI is specially
designed for the kind of producers considered in the application. Firstly,
the links between the inputs and the outputs are taken into account.
Indeed, plants use inputs that are differentially linked to each type of
electricity production. Next, the methodology we have developed al-
lows us to define and decompose output-specific MPIs. We believe that
these output-specific indexes are of particular interest in this context,
since they will allow us to propose results for each type of electricity

https://doi.org/10.1016/j.seps.2018.02.003
Received 10 May 2017; Received in revised form 19 December 2017; Accepted 23 February 2018

E-mail address: Barnabe.Walheer@xjtlu.edu.cn.
1 Economies of scope, a term popularized by Panzar and Willig [57], are present when it is less costly to produce multiple outputs within a firm rather than in several firms.

Socio-Economic Planning Sciences 65 (2019) 76–88

Available online 07 March 2018
0038-0121/ © 2018 Elsevier Ltd. All rights reserved.

T

http://www.sciencedirect.com/science/journal/00380121
https://www.elsevier.com/locate/seps
https://doi.org/10.1016/j.seps.2018.02.003
https://doi.org/10.1016/j.seps.2018.02.003
mailto:Barnabe.Walheer@xjtlu.edu.cn
https://doi.org/10.1016/j.seps.2018.02.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.seps.2018.02.003&domain=pdf


separately. This is not possible when considering standard MPI models.
Finally, the MPI is nonparametric in nature since it is not based on any
parametric/functional specifications of the production technology.2

Rather, we reconstruct the production possibilities solely using the
observed inputs and outputs. In this context, we believe that the non-
parametric feature of the index is particularly relevant since it is very
difficult to impose a specific production function for the multi-output
plants and, importantly, this may have a huge impact on the results.

Below we present a literature review on the MPI and the links be-
tween the inputs and the outputs. This will allow us to position our
contribution to the relevant literature.

1.1. Malmquist productivity index

The Malmquist productivity index (MPI) proposed by Caves et al.
[1] who named it after Malmquist [2]; measures relative performance
changes of Decision Making Units (DMUs) between two or more per-
iods. The MPI has several desirable features. On the one hand, the MPI
could be computed using the distances to the reconstructed production
possibilities obtained with the nonparametric efficiency analysis. It
implies that no assumption about production functions are made. On
the other hand, the MPI can be decomposed into two different com-
ponents, efficiency changes and technical changes, to better understand
the causes of relative performance change. Several decompositions
have been suggested by Färe et al. [3,4], and Ray and Desli [5]. Finally,
the MPI requires only input and output data; no price data are needed.

Since the initial definition of the MPI, several theoretical extensions
have been proposed [6]. Suggested a new decomposition of the MPI to
account for changes in plant capacity utilization; Chen [7] introduced a
non-radial MPI; Chen and Ali [8] provided a further discussion on its
second component; Pastor and Lovell [9] proposed a global MPI; Ca-
manho and Dyson [10] suggested to using the MPI to compare groups;
Zelenyuk [11] developed an aggregate MPI to compare groups; Yu [12]
provided a new decomposition of the MPI that measures capacity
productivity change and variable input productivity change; Kao [13]
proposed a common-weight DEA model for the global MPI; Oh and Lee
[14] introduced a metafrontier approach of the MPI when the tech-
nologies of the DMUs are not the same; Portela and Thanassoulis [15]
explained how to use MPI with negative data; Pastor, Asmild and Lovell
[16] introduced a biennial MPI; Wang and Lan [17] suggested a double
frontier MPI; O'Donnell [18] defined complete productivity indexes;
Kao and Hwang [19] defined a multi-period MPI to capture the pro-
ductivity change for a large period; and Yang et al. [20] introduced a
factor-specific MPI based on common weights DEA. All the above the-
oretical extensions and the large numbers of applications clearly reveal
the usefulness of the MPI as a theoretical and practical instrument.

Initially the MPI, as defined by Caves et al. [1], was interpreted as a
productivity change index. Recently, there has been a debate on the
validity of the MPI to measure productivity change. Indeed, this is only
true under quite restrictive conditions. On the one hand, it requires that
the technology is inversely homothetic (intuitively, it implies separ-
ability between inputs and outputs, see Färe et al. [21] for details),
which could be a stringent condition. On the other hand, the MPI is not
complete (intuitively, it means that it could not be written as a function
of aggregate inputs and outputs). We refer to O'Donnell [18,22] and
Peyrache [64] who highlight this issue. Contrary to the MPI, there ex-
ists other productivity indexes, like the Laspeyres, Paasche, Fisher,
Tornqvist and Hicks-Moorsteen (introduced by Diewert and Nakamura
[23], and Bjurek [24]) indexes, which, in general, measure productivity
changes more adequately. Nevertheless, the MPI is still the most

popular index used in practice, probably due to its decomposition.
Therefore, in the following, we do not claim that the MPI is a pro-
ductivity change index. On the contrary, we interpret the MPI as a re-
lative performance index (this is also the interpretation used by
Grosskopf [25]) and use its decomposition into efficiency and technical
changes. As a final remark, it is important to stress that the output-
specific modelling proposed here does not crucially depend on the MPI
and could fairly easily be used in the context of other indexes.

While the standard MPI and its extensions have demonstrated their
usefulness in capturing the relative performance change of the DMUs,
these models quite often suffer from a lack of realism in multi-output
settings. We can point to two main limitations in those settings. Firstly,
standard MPI models consider that all the inputs produce simulta-
neously all the outputs (i.e. a black box modelling), while in multi-
output settings every inputs could be allocated differently to each
output production. Secondly, standard MPI models only provide results
for the aggregate production process. In multi-output settings, reg-
ulators and managers require more detailed results (i.e. results for each
output production process) to make appropriate decisions.

1.2. Links between inputs and outputs

In multi-output settings, different types of inputs are simultaneously
used to produce the outputs. On the one hand, some inputs are jointly
used to produce all (or a subset of) the outputs (see Salerian and Chan
[26]; Despic et al. [27]; and Cherchye et al. [28]). These inputs give rise
to economies of scope, which form a prime economic motivation to
produce multiple outputs. On the other hand, some inputs can also be
allocated to specific output productions (see Ref. [29]; Färe et al. [30];
Tone and Tsutsui [31]; Cherchye et al. [32]; and Walheer [33,34]). By
integrating information on the internal production structure, all the
above approaches are trying to enhance the realism of the efficiency
analysis. As such, these approaches have a greater ability to detect in-
efficiency (i.e. more discriminatory power) than more standard tech-
niques that do not use this information. The model of Cherchye et al.
[35,36] provides a unifying framework, which considers both types of
inputs. They model each output separately by its own production
technology, while allowing for interdependence between the output-
specific technologies. As a consequence, the links between inputs and
outputs are naturally taken into account. Attractively, their model does
not require any extra assumptions about the production process (only
the production axioms of standard efficiency models adapted to their
output-specific modelling).

While these approaches have been used in different contexts and
prove their usefulness, they only propose a static analysis of the multi-
output production processes.3 In this paper, we extend their metho-
dology in a dynamic setting by suggesting a new index, which takes the
form of an MPI. Attractively, the output-specific modelling of the pro-
duction process naturally allows us to define output-specific MPIs and
their decomposition into output-specific efficiency change and output-
specific technological change. As such, the proposed methodology has
more discriminatory power and gives more detailed results than stan-
dard MPI approaches. As a final remark, we point out that the index we
suggest bears a close relationship to an existing index in the literature.
Indeed, Walheer [37,38] has also proposed a productivity index for
multi-output settings. The main difference with our index is that he
assumes that the DMUs are cost minimizers while we adopt a technical
perspective and focus our attention on the decomposition of the index
into efficiency and technical changes.

2 At this point it should be made clear that the MPI is nonparametric in this paper only
because we use the nonparametric efficiency model to estimate the distance functions.
There exists parametric estimators too. See for example, Fuentes et al. [58] for more
discussion. Refer to Färe et al. [59]; Cooper et al. [60]; Cooper et al. [61]; Fried et al.
[62]; and Cook and Seiford [63] for reviews on the nonparametric efficiency approach.

3 For applications, see, for example, Cherchye et al. [32] and Cherchye et al. [36] who
apply the methodology to the case of a large service company; Cherchye et al. [35] who
apply the methodology to the case of pollutant plants; and Walheer [33,34] who apply the
methodology to the case of the growth and the convergence of countries.

B. Walheer Socio-Economic Planning Sciences 65 (2019) 76–88

77



1.3. Outline

The rest of this paper unfolds as follows. Section 2 presents the
methodology. In Section 3, we apply the methodology to the case of
electricity plants in the US. Section 4 concludes.

2. Methodology

In this section, we start by introducing some necessary notation and
terminology. Next, we present our output-specific and overall technical
efficiency measurements and indicate how to compute them in practice.
Finally, we define our output-specific and overall MPIs and their de-
compositions.

2.1. Data set and technology sets

Suppose we observe data for n DMUs during T periods. Each DMU
∈ …j n{1, , } in every period ∈ …t T{1, , }, use m inputs captured by the

vector �= … ′ ∈ +x xX ( , , )j jt jt
m m1 , to produce s outputs, captured by the

vector �⎜ ⎟= ⎛
⎝

… ⎞
⎠

′
∈ +y yY , ,jt jt jt

s s1 .

Suppose also that the inputs are linked differently to the outputs.
Some inputs are only used in the production process of specific outputs,
or in other words, these inputs are allocated to individual output r. We
use ∈α [0,1]jt

r as the share of these inputs that is used to produce output
r. Clearly, we have ∑ == α 1r

s
jt
r

1 . Some other inputs are simultaneously
used in the production process of different outputs and can thus not be
allocated to specific outputs. These inputs give rise to economies of
scope, which constitutes a prime economic motivation to produce
multiple outputs.

Let �∈ +X jt
r m denote the vector of inputs used to produce output r.

Clearly, when some inputs cannot be allocated to the production of
specific outputs, they will appear in all X jt

r making the output-specific
production processes interdependent. Attractively, the output-specific
input vectors X jt

r can easily be connected with the initial input vector
Xjt if the input allocation is observed. Let us define V jt

r for every DMU j
at period t as follows:

=
⎧

⎨
⎩

i
α i rV( )
1 if input  is used to produce all the outputs,

( ) if input  is allocated to the production of output  ,
0 otherwise.

jt
r

i jt
r
i

(1)

As such, V jt
r summarizes the information regarding how the inputs

are allocated to output r for DMU j at period t. The output-specific input
vectors are therefore obtained as follows: = ⊙X V Xjt

r
jt
r

jt (where ⊙ is
the element-by-element product).

We assume that we observe the allocation of the inputs to outputs.
That is, we observe …V V, ,jt jt

r1 , and therefore we also observe the
output-specific vectors …X X, ,jt jt

r1 . This is not a strong assumption in
many contexts since in general the DMUs know how they use their
inputs to produce their outputs. Nevertheless, the following metho-
dology is easily extended if the allocation is not or partially observed.
See Cherchye et al. [32] and Walheer [33]. Taken together, we observe
the following data set D:

⎜ ⎟= ⎧
⎨⎩

⎛
⎝

… … ⎞
⎠

= … = … ⎫
⎬⎭

D y y j n t TX X, , , , , 1, , ; 1, , .jt jt
s

jt jt
s1 1

(2)

We use input requirement sets ⎜ ⎟
⎛
⎝

⎞
⎠

I yt
r

jt
r to characterize the tech-

nology. In particular, ⎜ ⎟
⎛
⎝

⎞
⎠

I yt
r

jt
r is defined for every output r as follows:

�⎜ ⎟
⎛
⎝

⎞
⎠
= ⎧
⎨⎩

∈ ⎫
⎬⎭

+I y yX X can produce  .t
r

jt
r r m r

jt
r

(3)

⎜ ⎟
⎛
⎝

⎞
⎠

I yt
r

jt
r contains all the combinations of output-specific inputs Xr that

can produce the output quantity yjt
r . As discussed before, the output-

specific vectors are interdependent when some inputs cannot be allo-
cated to a specific production process making the input requirement

sets ⎜ ⎟
⎛
⎝

⎞
⎠

I yt
r

jt
r interconnected.

We assume that those sets are monotone (or free-disposal), convex
and satisfy variable returns-to-scale. These technology axioms are
common to many popular nonparametric efficiency models and form an
empirically attractive minimal set of assumptions. Moreover, they make
sense for many empirical applications. It is important to remark that the
proposed methodology can easily be defined when considering other
technology axioms, as for example, non-convexity, constant returns-to-
scale, or weak disposability. We refer to Cherchye et al. [32] for a
rigorous definition of these technology axioms in a similar context.

2.2. Efficiency measurements

As explained in the Introduction, we are interested by the cost/input
side of the plant production process. As such, we evaluate input effi-
ciency as the distance of the evaluated DMU's output-specific input

vector to the isoquant ⎜ ⎟
⎛
⎝

⎞
⎠

I yIsoq t
r

jt
r , which is defined as:

⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠
= ⎧
⎨⎩

∈ ⎛
⎝

⎞
⎠

< < ∉ ⎛
⎝

⎞
⎠

⎫
⎬⎭

I y I y β β I yX XIsoq for 0 1, .t
r

jt
r r

t
r

jt
r r

t
r

jt
r

(4)

Thus, if ⎜ ⎟∈ ⎛
⎝

⎞
⎠

I yX Isoqjt
r

t
r

jt
r , it means that the inputs X jt

r are the

minimal input quantities needed at time t to produce the output
quantity yjt

r . When it is not the case, it implies that the inputs can be
reduced, while keeping the output quantity at the same level.

⎜ ⎟
⎛
⎝

⎞
⎠

I yIsoq t
r

jt
r is therefore known as the technically efficient frontier of

⎜ ⎟
⎛
⎝

⎞
⎠

I yr
jt
r . We note that the index t on the input requirement set refers to

the year of the technology.
A natural indicator of the distance to the isoquant is the radial input

distance function introduced by Shephard [39,40].4 When considering
input requirement set r, it is defined as:

⎜ ⎟ ⎜ ⎟⎜ ⎟
⎛
⎝

⎞
⎠
= ⎧

⎨⎩

⎛
⎝

⎞
⎠
∈ ⎛

⎝
⎞
⎠

⎫
⎬⎭

D y ϕ
ϕ

I yX
X

, max .t
r

jt
r

jt
r jt

r

t
r

jt
r

(5)

⎜ ⎟
⎛
⎝

⎞
⎠

D y X,t
r

jt
r

jt
r is the largest equiproportionate factor by which the input

quantities X jt
r can be reduced and still produce the quantity yjt

r .

⎜ ⎟
⎛
⎝

⎞
⎠
≥D y X, 1t

r
jt
r

jt
r , with ⎜ ⎟

⎛
⎝

⎞
⎠
>D y X, 1t

r
jt
r

jt
r reflecting inefficient behaviour

for production of the −r th output, and ⎜ ⎟
⎛
⎝

⎞
⎠
=D y X, 1t

r
jt
r

jt
r implies efficient

behaviour for output r.
The input distance function is reciprocal to the input-oriented

technical efficiency, which is known as the Debreu [41] − Farrell [42]
input efficiency measure. It is defined as follows:

⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠
= ⎧

⎨⎩
∈ ⎛

⎝
⎞
⎠

⎫
⎬⎭

TE y θ θ I yX X, min .t
r

jt
r

jt
r

jt
r

t
r

jt
r

(6)

⎜ ⎟
⎛
⎝

⎞
⎠

TE y X,t
r

jt
r

jt
r gives the maximal equiproportionate input reduction

(captured by θX jt
r ) that still allows to produce the output yjt

r .

4 The radial input distance function is the most natural indicator given our application;
refer to Cherchye et al. [36] for an extension of the output-specific setting with direc-
tional distance functions.
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⎜ ⎟
⎛
⎝

⎞
⎠

TE y X,t
r

jt
r

jt
r is situated between 0 and 1, and a greater value of

⎜ ⎟
⎛
⎝

⎞
⎠

TE y X,t
r

jt
r

jt
r indicates lower technical inefficiency. A value of one in-

dicates an efficient behaviour.

The output-specific technical efficiency measurement ⎜ ⎟
⎛
⎝

⎞
⎠

TE y X,t
r

jt
r

jt
r

benchmarks DMUs for each output individually. Below, we explain how
the output-specific modelling can be used to benchmark DMUs for the
whole production process. This overall technical efficiency measure-

ment, denoted ⎜ ⎟
⎛
⎝

… … ⎞
⎠

TE y y X X, , , , ,t jt jt
s

jt jt
s1 1 , will provide a complementary

benchmarking analysis to the output-specific technical efficiency mea-

surements ⎜ ⎟
⎛
⎝

⎞
⎠

TE y X,t
r

jt
r

jt
r .

We start by defining the overall distance function as follows:

⎜ ⎟ ⎜ ⎟⎜ ⎟
⎛
⎝

… … ⎞
⎠
= ⎧

⎨⎩
∀ ⎛

⎝
⎞
⎠
∈ ⎛

⎝
⎞
⎠

⎫
⎬⎭

D y y ν r
ν

I yX X
X

, , , , , max : .t jt jt
s

jt jt
s jt

r

t
r

jt
r1 1

(7)

⎜ ⎟
⎛
⎝

… … ⎞
⎠

D y y X X, , , , ,t jt jt
s

jt jt
s1 1 is a modified version of Shephard's [39,40] de-

finition when considering s output-specific input requirement sets. The

interpretation of the distance ⎜ ⎟
⎛
⎝

… … ⎞
⎠

D y y X X, , , , ,t jt jt
s

jt jt
s1 1 is analogous to the

interpretation of the output-specific distance D y X( , )t t
r

t
r , but applies

here at the aggregate level: ⎜ ⎟
⎛
⎝

… … ⎞
⎠

D y y X X, , , , ,t jt jt
s

jt jt
s1 1 is the largest equi-

proportionate factor by which the inputs …X X( , , )jt jt
s1 can be reduced and

still produce the quantity ⎜ ⎟
⎛
⎝

… ⎞
⎠

y y, ,jt jt
s1 .

Using the same relationship as before between the input distance
and the input technical efficiency measurement, we can easily define
our concept of overall technical efficiency measurement:

⎜ ⎟ ⎜ ⎟
⎛
⎝

… … ⎞
⎠
= ⎧

⎨⎩
∀ ∈ ⎛

⎝
⎞
⎠

⎫
⎬⎭

TE y y η r η I yX X X, , , , , min : .t jt jt
s

jt jt
s

jt
r

t
r

jt
r1 1

(8)

Again, the interpretation is analogous to the interpretation of the
technical efficiency measurement TE y X( , )t

r
t
r

t
r . That is,

⎜ ⎟
⎛
⎝

… … ⎞
⎠

TE y y X X, , , , ,t jt jt
s

jt jt
s1 1 is situated between 0 and 1, and a lower value

indicates greater technical inefficiency.
Interestingly, the overall technical efficiency measurement could be

related to the output-specific technical efficiency measurements by
taking the maximum:

⎜ ⎟ ⎜ ⎟
⎛
⎝

… … ⎞
⎠
= ⎛

⎝
⎞
⎠∈ …

TE y y TE yX X X, , , , , max , .t jt jt
s

jt jt
s

r s
t
r

jt
r

jt
r1 1

{1, , } (9)

This relationship is explained by the presence of inputs jointly used
to produce all the outputs that must, by definition, be reduced by the
same proportion for all the outputs. As such, by taking the maximum we
are sure that this is the case. It also motivates the need for output-
specific results to contrast the results obtained at the aggregate level
with the overall technical efficiency measurement.

2.3. Linear programs

In practice, the empirical output-specific and the overall technical
efficiency scores are easily obtained by the use of linear programs. The

output-specific technical efficiency scores ⎜ ⎟
⎛
⎝

⎞
⎠

TE y X,t
r

jt
r

jt
r are obtained for

each output ∈ …r s{1, , } of each DMU ∈ …j n{1, , } at period ∈ …t T{1, , }
by using (LP-1):

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠
=

∑ ≤

∀ ⎛
⎝

− ⎞
⎠
≥

∑ =
∀ ≥
≥

∈ …

=

=

y θ

n λ θ

r y y

n λ
r λ

θ

X

X X

λ

TE , min

: 0

1
: 0
0.

t
r

jt
r

jt
r

λ k n

k kt
r

kt
r

jt
r

kt
r

kt
r

jt
r

k kt
r

kt
r

( {1, })

1

1

kt
r

The overall technical efficiency scores ⎜ ⎟
⎛
⎝

… … ⎞
⎠

TE y y X X, , , , ,t jt jt
s

jt jt
s1 1 of

each DMU ∈ …j n{1, , } at period ∈ …t T{1, , } can be obtained in two
ways: either once all the output-specific technical efficiency scores are
computed with (LP-1), by using the relationship established in (9), or in
one step by the use of (LP-2):

⎜ ⎟

⎜ ⎟

⎛
⎝

… … ⎞
⎠
=

∀ ∑ ≤

∀ ∀ ⎛
⎝

− ⎞
⎠
≥

∀ ∑ =
∀ ∀ ≥
≥

∈ … ∈ …

=

=

y y η

r n λ η

k r y y

r n λ
k r λ

η

X X

X X

λ

TE , , , , , min

:

, : 0

: 1
, : 0
0.

t jt jt
s

jt jt
s

λ r s k n

k kt
r

kt
r

jt
r

kt
r

kt
r

jt
r

k kt
r

kt
r

1 1
( {1, }, {1, })

1

1

kt
r

2.4. Malmquist productivity index

The Malmquist productivity index (MPI) is used to compare
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geometric mean of the distance ratios taking period t and +t 1 as the
year reference for the technology (as explained previously the subscript
t and +t 1 on the distance functions and on the technical efficiency
measurements refer to the year of the technology, i.e. the input re-
quirement sets). In the rest of this section, we drop subscript j, referring
to a specific DMU, for better readability.
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The benchmark value is 1. An index bigger than 1 implies a per-
formance regress since, in that case, the inputs …+ +X X, ,t t

s
1

1
1 are, on

average, further from the efficient boundary than the inputs …X X, ,t t
s1

for securing the corresponding outputs. An index smaller than 1 implies
a performance progress. Indeed, in that case, the inputs …X X, ,t t

s1 are
further from the efficient boundary than are the inputs …+ +X X, ,t t

s
1

1
1 for

securing the corresponding outputs.
At this point, we remark that for settings with one output (i.e.
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s
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1 coin-
cides with the MPI of Caves et al. [1]. In settings with more than one
output (i.e. >s 1), the two indexes are different since we consider that
the inputs could be allocated to the outputs. As a result, our index has
the advantages of increasing the realism and the discriminatory power
of the performance analysis.

Attractively, the MPI could be decomposed into two components:
efficiency change EC and technical change TC. The following decom-
position is in line with the decomposition suggested by Färe et al. [3]
for the MPI of Caves et al. [1]. In fact, when =s 1, our decomposition
coincides with the Färe et al.'s [3] decomposition, while when >s 1 our
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decomposition offers the advantage of taking the links between inputs
and outputs into account. These indexes are defined as follows:
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Efficiency change is interpreted as the change in how far observed
inputs are from the minimum inputs needed to secure the output pro-
duction between years t and +t 1. Technical change captures the shift
in technology between the two periods evaluated at t and +t 1. The
interpretation of these indexes is similar to the interpretation of the
MPI. It means that an index smaller than 1 implies a technology/effi-
ciency progress, while an index greater than 1 implies a technology/
efficiency regress.

As such, the MPI could be rewritten exclusively as the product of the
two previous indexes as follows:
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MPI and its decomposition into EC and TC cannot be computed
directly because of their non-linear nature. However, it suffices to
evaluate the linear program (LP-2) by taking t or +t 1 as the reference
year to obtain all the necessary technical efficiency scores to compute
the MPI and its decomposition.

2.5. Output-specific Malmquist productivity indexes

Our output-specific modelling of the production process naturally
allows us to define MPIs at the output level. In fact, it suffices to replace
the overall distance function and technical efficiency measurement by
the output-specific counterparts in definitions (10) to (13) to define
those indexes. We obtain the following definitions:
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The decomposition into output-specific efficiency change and
output-specific technical change is given by:
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where the output-specific components of the decomposition are defined
as:
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As for MPI, an output-specific index MPIr greater than 1 implies a
performance regress for output r, while an index smaller than 1 in-
dicates a performance progress for output r. As such, the benchmark
value is also 1. There is no straightforward relationship between the
MPI and the output-specific MPIs, however, they are related by the link
between the technical efficiency measurement and the output-specific
technical efficiency measurements explained previously. The inter-
pretation of the efficiency and technical changes for the output-specific
level is also analogous to those for the aggregate level. Finally, to obtain
the output-specific MPIr ’s and their decomposition in practice, it is
enough to evaluate the linear programs (LP-1) by taking t or +t 1 as the
reference years for the technology.

As a final remark, we point out that, in general, it is better to use
statistical tests to support the results found based on the overall and
output-specific MPIs and their decomposition. Indeed, we should keep
in mind that these results are descriptive, and thus lack of statistical
foundations. See our application for an illustration of the use of (one-
and two-sample) Kolmogorov-Smirnov tests to verify whether the dis-
tribution of the MPIs and their decomposition is smaller than one (re-
flecting an improvement), and whether one type of plant or electricity
perform better than another type.

3. Application

Improving the performance of electricity plants is an important goal
that both regulators and managers are trying to achieve. There are al-
ready several studies that measure the performances of the plants using
nonparametric efficiency models. See, for example, Yaisawang and
Klein [43]; Färe et al. [44]; Sarkis and Cordeiro [45]; Sueyoshi and
Goto [46]; Cherchye et al. [35] for analyses of US electric utilities;
Hattori [47] and Tone and Tsutsui [48]; Sueyoshi and Goto [49] for
analyses of both Japanese and US electric utilities; Abbott [50] for an
application for Australian electric utilities; Pacudan and de Guzman
[51] for an application for the Philippines' electric utilities; Pombo and
Taborda [52] for an application for Columbian electric utilities;
Kulshreshtha and Parikh [53] for an application for Indian electric
utilities; and Jamasb and Pollitt [54]; Korhonen and Luptacik [55]; and
Giannakis et al. [56] for an analysis of European electric utilities.

In the US, there are different types of electricity generation plants
that we can group into three main categories. Firstly, those that pro-
duce only one type of (renewable or non-renewable) electricity. Next,
those that produce more than one type of (renewable or non-renew-
able) electricity. Finally, those that produce both renewable and non-
renewable electricity. In this empirical application, we question the
performance of the plants for renewable and non-renewable electricity
generation. That is, we compare the three different types of plants and
identify the best performing. In other words, we ask the following
questions: Is it preferable to have single- or multi-electricity plants?
Should plants focus on the production of renewable or non-renewable
electricity or produce both? Once the best type of plant has been found
in terms of performance, we also question the reasons for that better
performance. We could point out two main causes that explain the
performance differences between plants: efficiency and technical
changes. Efficiency change reveals how the plants use their current
technology to generate the electricity, while technical change shows
how the plants have invested to innovate the production process.

Clearly, it is not obvious that the cause in the performance change is
the same for each type of electricity production. As such, we cannot
follow the modelling of the production process suggested by previous
studies, since they regroup all types of electricity produced into a single
output. On the contrary, we must split the electricity generation into
two parts: renewable electricity (e.g. wind, solar, geothermal) and non-
renewable electricity (e.g. coal, oil, gas). Another advantage of the
modified setting is that it allows us to link the fuel input to non-re-
newable electricity production since this input is clearly not used to
produce renewable electricity, as it is implicitly assumed in the
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previous studies.
To present our empirical application, we first present our data and

discuss specificity of the set-up. Subsequently, we present our results
and make use of statistical tests to support our conclusions.

3.1. Data and input and output section

We use data from the eGRID system that was developed by the
Environmental Protection Agency (EPA) in the US. In particular, we use
all the databases available between 2000 and 2012 (there are no da-
tabase available after 2012). Unfortunately, the databases are not
available for each year but seven exist for that period (2012, 2010,
2009, 2007, 2005, 2004, 2000). There are also databases before 2000,
but to avoid a too small sample, we do not take those two additional
databases into account.

A particular feature of the eGRID system is that, for every plant, it
distinguishes between renewable (wind, solar, geothermal, hydro, and
biomass) and non-renewable (coal, oil, gas, nuclear, and other fossil)
electricity generation.5 As such, we can split the plants into different
categories: (1) single-electricity plants: plants that produce only one type
of renewable or non-renewable electricity; (2) multi-electricity plants:
plants that produce more than one type of renewable or non-renewable
electricity; and (3) mixed-electricity plants: plant that produce both re-
newable and non-renewable electricity. While the output side of the
electricity generation process is described in much detail by the eGRID
system, the input side is not so detailed: only the fuel consumption is
provided. A strategy, used, for example, by Tone and Tsutsui [65],
Sarkis and Cordeiro [45]; Cherchye et al. [35]; and Walheer [37,38]; is
to proxy the missing inputs (such as total assets, number of employees,
etc.) by the nameplate capacity. We obtain the following setting:
nameplate capacity (x1) is used to produce non-renewable (y1) and
renewable (y2) electricity. Fuel (x2) is only used to generate non-re-
newable electricity. Adopting the notation of Section 2, for each plant j
at period t we obtain:
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3.2. Descriptive statistics

We start our presentation of the data by providing, in Table 1, the
number of plants and the distribution per type of plant for the period.
At this point, we remark that we concentrate our analysis on plants that
have a positive electricity generation and that produce electricity for at
least two periods (for the simple reasons that it is impossible to conduct
an efficiency analysis for plants with no electricity generation, and that
the MPIs require observation for two consecutive periods). An initial
observation is that the numbers of plants in the US increases over the
period (4648 in 2000–5929 in 2012). This pattern is not kept for every
type of plant. Indeed, while the number of single-electricity plants has
clearly increased; it is not the case for the multi-electricity plants. In
fact, there is 1 multi-electricity plant for 2.46 single-electricity plants in
2000 and 1 multi-electricity plant for 4.81 single-electricity plants in
2012. Finally, the number of mixed-electricity plants is more or less
stable for the period. At the electricity level, there is 1 renewable
electricity generation plant for 1.38 non-renewable electricity genera-
tion plants in 2000; and 1 renewable electricity generation plant for

0.98 non-renewable electricity generation plants. This shows the in-
creasing importance of renewable electricity in the US.

We continue our analysis by showing how the outputs and inputs
are distributed between the types of plants. Table 2 presents those re-
sults. Total electricity generation has clearly increases over the period:
around +10% for non-renewable electricity and +25% for renewable
electricity. This confirms the increasing importance of renewable
electricity for the US. Nevertheless, we remark that renewable elec-
tricity represents only around 12% of the total electricity production in
2012 (against around 10% in 2000). For non-renewable electricity,
multi-electricity plants produce the highest proportion, but their im-
portance decreases significantly for the period (71.82%–53.45%). For
renewable electricity, it is the opposite, single-electricity plants are the
most important plants with a stable production around 90% over the
period. Finally, mixed-electricity plants represent only 2% of the gen-
eration of non-renewable electricity, and around 10% of the generation
of renewable electricity. As such, the main role of those types of plants
is to produce renewable electricity, while non-renewable electricity
generation could be seen as a good by-product of the production pro-
cess.

For the input side of the production process, there is a decrease of
the fuel consumption (−6%), and a rise of nameplate capacity (+42%).
This is rather intuitive as there are more and more plants in the US,
explaining why overall inputs increase; but there are also more and
more plants that produce renewable electricity, explaining why fuel
input decreases slightly. Fuel is mostly used by the multi-electricity
plants, but again, their share decreases. The same holds true for
nameplate capacity and the numbers of boilers and generators.

All in all, this part reveals two important facts. One, there is a de-
creasing importance of multi-electricity plants; even if they still pro-
duce the largest share of non-renewable electricity. Two, there is an
increasing importance of renewable electricity in the US, even if non-
renewable electricity still represents the largest share of electricity
generation in the US. Note that this is in line with recent policy im-
plementations in the US that try to help the development of renewable
electricity (for example, the Energy Policy Act of 2005, the Energy and
Tax Extenders Act of 2008, the American Recovery and Reinvestment
Act of 2009, and also renewable electricity production continues to be
promoted by many states (as in 2007 when 25 states established re-
newable portfolio standards)). This argues for studying renewable and
non-renewable electricity generation separately.

3.3. MPIs and decomposition

Using the linear programs (LP-1) and (LP-2), we compute the
output-specific and overall technical efficiency scores for the plants.
Thanks to these scores, we calculate the MPIs and their decomposition
into efficiency and technical changes, and the output-specific MPIs and
their decomposition into output-specific efficiency and output-specific
technical changes. We present the medians and averages when pooling
all years together in Table 3. Detailed results per year are available in
Tables 7, 8, and 9, available in the Appendix. We concentrate our

Table 1
Number of plants per type.

Year Total Multi-electricity plant Single-electricity plant

Non-Renewable Renewable Mix Non-Renewable Renewable

2012 5929 957 3 353 1747 2869
2010 5364 1002 1 342 1656 2363
2009 5246 995 1 343 1659 2248
2007 5013 1058 1 335 1654 1965
2005 4839 1118 2 312 1566 1841
2004 4658 1109 1 316 1487 1745
2000 4648 1274 1 392 1215 1766

5 Note that for the distinction between renewable and non-renewable electricity, we
follow the eGRID system as in their database they distinguish between those two types of
electricity.
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discussion on the main results.
Let us start with the analysis of the MPI and its decomposition for

the total electricity generation (MPI, EC and TC). On average, plants
have faced a small performance regress for the total electricity gen-
eration. The average for the period is 1.03 (median of 1.02). This is
mostly due to a negative efficiency change (average and median of
1.04), while the technical change is sometimes positive but not im-
portant enough to compensate (average of 0.99 and median of 1). This
picture is clearly different when looking at single-, multi-, and mixed-
electricity plants separately. Single-electricity plants present a status
quo of their performance, confirmed by both the efficiency and tech-
nical change indexes. On the contrary, multi-electricity plants present,
except in 2010–2009, an improvement in their performance. This im-
provement is mostly due to a positive technical change, indicating that
important investment and innovation have occurred for this type of
plant. Our descriptive statistics indicated previously the decrease of the

number of multi-electricity plants in the US. The index results reveal
that probably less well performing plants have disappeared, explaining
the good performance that we observe. Finally, mixed-electricity plants
have a regress of their performance for the period, and this holds true
for both the efficiency and technical change index. This indicates that
merging both renewable and non-renewable electricity generation into
one plant does not improve the performance of the plants.

Next, we move to the analysis per type of electricity generation. For
non-renewable electricity generation (MPI1, EC1, and TC1), we see a
performance progress, except in 2010–2009 and 2007–2005. This im-
provement is due mostly to a positive efficiency change. Again, when
looking per type of plants, the pattern is clearly different. Single- and
mixed-electricity plants present performance regress, while multi-elec-
tricity plants present performance progress. The regress is due to both
efficiency and technical regress, while the progress is due to technical
change progress. This is intuitive to find again this result as multi-

Table 2
Inputs and outputs.

Year Total Multi-electricity plant Single-electricity plant

Non-Renewable Renewable Mixed Non-Renewable Renewable

Non-Renewable electricity generation (MWh)
2012 3552725742 53.45% 0.00% 2.06% 44.48% 0.00%
2010 3700392144 59.19% 0.00% 2.13% 38.68% 0.00%
2009 3535171562 58.65% 0.00% 1.70% 39.65% 0.00%
2007 3812874838 62.92% 0.00% 1.70% 35.38% 0.00%
2005 3703473450 65.53% 0.00% 1.79% 32.68% 0.00%
2004 3588054765 65.04% 0.00% 1.83% 33.13% 0.00%
2000 3462520527 70.20% 0.00% 2.12% 27.69% 0.00%
Renewable electricity generation (MWh)
2012 494064231.7 0.00% 0.15% 8.91% 0.00% 90.94%
2010 428305376.7 0.00% 0.01% 9.98% 0.00% 90.01%
2009 419139977.2 0.00% 0.01% 10.01% 0.00% 89.98%
2007 352568486.7 0.00% 0.01% 12.42% 0.00% 87.57%
2005 357114088.7 0.00% 0.02% 11.66% 0.00% 88.32%
2004 351579558.4 0.00% 0.01% 12.38% 0.00% 87.61%
2000 355390790.4 0.00% 0.00% 14.26% 0.00% 85.74%
Fuel input (MMBtu)
2012 26806591809 69.49% 0.00% 4.23% 25.51% 0.77%
2010 28339881054 76.31% 0.00% 4.23% 18.78% 0.68%
2009 26742618017 76.55% 0.00% 3.72% 19.07% 0.66%
2007 29763014512 79.96% 0.00% 3.11% 16.39% 0.53%
2005 29558610691 81.95% 0.00% 3.53% 13.95% 0.57%
2004 29946654205 79.73% 0.00% 3.68% 15.84% 0.74%
2000 29182201783 86.15% 0.00% 4.16% 9.36% 0.33%
Nameplate capacity (MW)
2012 1150287.7 45.09% 0.03% 2.82% 39.08% 12.98%
2010 1119882.1 48.43% 0.00% 2.69% 37.50% 11.38%
2009 1104124.2 48.03% 0.00% 2.41% 38.58% 10.98%
2007 1063422.9 52.08% 0.00% 2.29% 36.06% 9.57%
2005 1044940.1 54.09% 0.00% 2.26% 34.55% 9.10%
2004 1021813.9 53.95% 0.00% 2.29% 34.83% 8.93%
2000 847180.8 62.45% 0.00% 2.96% 24.41% 10.18%

Table 3
Medians and averages for the period.

Index All Single Multi Mixed

Median Average Median Average Median Average Median Average

MPI 1.02 1.03 1.02 1.01 0.98 0.99 1.03 1.05
EC 1.04 1.04 1.00 1.00 1.02 1.02 1.06 1.08
TC 1.00 0.99 1.01 1.01 0.97 0.97 1.02 1.01
MPI1 0.99 1.00 1.02 1.03 0.98 0.99 1.03 1.04

EC1 0.98 0.99 1.03 0.98 1.01 1.01 1.07 1.08

TC1 1.03 1.02 1.02 1.03 0.96 0.97 1.00 1.01

MPI2 1.01 1.02 0.99 1.00 – – 1.04 1.03

EC2 1.04 1.05 1.03 1.04 – – 1.07 1.08

TC2 0.98 0.99 0.97 0.98 – – 1.01 1.02
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output plants produce mostly non-renewable electricity (see our dis-
cussion of Table 2).

For renewable electricity (MPI2, EC2, and TC2), we see that there is
a performance regress. As such, the performance regress observed for
the total electricity generation is mostly due to the production of this
type of electricity. This also highlights the advantage of considering
results for each type of electricity separately; it provides extra valuable
information about the performances of the plants. The performance
regress is mostly due to a negative efficiency change. Single-electricity
plants have a status quo of their performance, but there is a positive
technical change for these plants. This indicates that investment and
innovation have been realized for single-electricity plants producing
renewable electricity. In other words, it implies that single-electricity
plants seem preferable for this type of electricity generation. Again, we
do not see any economic reasons why mixed-electricity plants should be
relied upon since the performances of these plants are rather poor.
Finally, note that we do not present the results for the multi-electricity
plants since, as discussed previously, those plants are mostly used to
produce non-renewable electricity, and thus there is not enough multi-
electricity plants producing renewable electricity to present any results.

3.4. Statistical tests

Our previous results are only descriptive; they are only based on
averages and medians, and thus suffer from a lack of statistical foun-
dation. To formally test our findings, we rely on one- and two-sample
Kolmogorov-Smirnov tests (KS tests). The one-sample KS test is a
nonparametric test that checks whether the distribution of one sample
is consistent with a referent distribution, and the two-sample KS test is
used to check whether the distributions of two samples are equal or not.
In our context, we calibrate the test to check whether plants have better
performance, i.e. a distribution smaller than 1, and to verify whether
one type of plant has better performance than another type or whether
one type of electricity over-performs the other; in other words, whether
it has a distribution closer to 1. The −p values are available for the one-
sample KS tests in Table 4 when pooling all years together, and per year
in Tables 10, 11, and 12 in the Appendix. The −p values of the two-
sample KS tests are available in Tables 5 and 6 when pooling all years,
and per year in Tables 13 and 14 in the Appendix. In Table 4, we in-
vestigate whether there are differences for the indexes between the
types of plants. In Table 5, we look for index differences between non-
renewable and renewable electricity generation. We choose 0.05 for the
size of the test.

Let us start with the −p values of the one-sample KS test. They
confirmed that there is a performance regress (a p-value lager than 0.05
means that we reject the null hypothesis that the sample distribution is
smaller than 1). Also, the −p values reveal that efficiency change is the
main reason of the regress (i.e. larger −p values). Next, our previous
observations for each type of plant are also confirmed by the −p values.
Indeed, most of the −p values for the single- and mixed-electricity plants
are larger than 0.05, while most are smaller than 0.05 for the multi-
electricity plants. This confirms the better overall performances of

multi-electricity plants. Also, it is confirmed that this is mainly due to
the positive technical change ( −p value is smaller than 0.05).

At the electricity level, the performance progress for non-renewable
electricity and the performance regress for renewable electricity are
confirmed. Indeed, the −p values are, in general, smaller than 0.05 for
the former, and larger for the latter. Next, the −p values indicate that
multi-electricity plants have indeed the best performances for non-re-
newable due to better technical change indexes over time. Afterwards,
for renewable electricity generation, we see that single-electricity
plants have the best performances. Finally, technical change is positive
for these plants.

Next, we analyze that the p-values of two-sample KS tests for non-
renewable and renewable electricity. At a general level, we see that
non-renewable electricity generation over-performs renewable, except
in 2010–2009. This holds true for single-electricity plants, but not for
mixed-electricity plants. This conclusion is clearly contrasted when
looking at the −p values for efficiency change and technical change.
While non-renewable electricity generation presents better efficiency
change performances than renewable electricity generation, it is not the
case for technical change performance. That is, the worst performances
of renewable electricity are due to a not high enough technical change
to compensate for negative efficiency change. This reveals that invest-
ment and innovation have been made for these plants, but they are not
yet used in an efficient manner. We can expect that renewable elec-
tricity will present a better performance than non-renewable when this
becomes the case. Finally, mixed-electricity plants do not present better
performances for renewable electricity, although this represents their
main production (see Table 2).

Finally, the −p values of two-sample KS tests when distinguishing
between types of plants reveal that, at the overall level, multi-electricity
plants present better performances than the two other types., and that
single-electricity plants have better performances than mixed-elec-
tricity plants. This holds true only because multi-electricity plants over-
perform for non-renewable electricity, but single-electricity plants are
clearly the best for renewable electricity. The −p values for the effi-
ciency and technical change confirm that overall single-electricity
plants have higher efficiency changes, but smaller technical changes.
The largest technical changes are those of multi-electricity plants.
Nevertheless, single-electricity plants present good performances for
technical change for renewable electricity.

4. Summary and discussion

We summarize our main findings in six points:

Table 4
One-sample KS −p values for the period.

Index All Single Multi Mixed

MPI 0.11 0.20 0.05 0.15
EC 0.16 0.08 0.16 0.34
TC 0.06 0.10 0.01 0.25
MPI1 0.12 0.20 0.06 0.15

EC1 0.05 0.07 0.09 0.19

TC1 0.09 0.10 0.04 0.13

MPI2 0.06 0.05 – 0.08

EC2 0.13 0.13 – 0.08

TC2 0.05 0.04 – 0.11

Table 5
Two-sample KS −p values for the period.

>MPI MPI1 2 >EC EC1 2 >TC TC1 2

All Single Mixed All Single Mixed All Single Mixed

0.05 0.04 0.09 0.02 0.03 0.32 0.43 0.44 0.23

Table 6
Two-sample KS −p values for the period.

Single > Multi Single > Mixed Multi > Mixed

MPI MPI1 MPI2 MPI MPI1 MPI2 MPI MPI1 MPI2

0.31 0.31 – 0.04 0.06 0.04 0.04 0.03 –
EC EC1 EC2 EC EC1 EC2 EC EC1 EC2
0.06 0.09 – 0.03 0.03 0.02 0.04 0.03 –
TC TC1 TC2 TC TC1 TC2 TC TC1 TC2
0.38 0.37 – 0.10 0.14 0.02 0.03 0.04 –
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• The number of multi-electricity plants has decreased over the
period, but they still produce more than 50% of non-renewable
electricity. For renewable electricity, only single-electricity plants
are important; they represent 90% of the production.

• Renewable electricity is increasing in importance in the US, even if
non-renewable electricity still represents slightly less than 90% of
total electricity generation.

• Overall, there is a regress of the performance for total electricity
generation.

• Single-electricity plants have better performances for renewable
electricity generation, but for non-renewable electricity, it is the
multi-electricity plants that perform better.

• Mixed-electricity plants are only important for renewable elec-
tricity, but are outperformed by single-electricity plants. The same
holds true for multi-electricity plants for non-renewable electricity.

• Overall, non-renewable electricity generation presents better per-
formances than renewable electricity generation, but this is con-
trasted when looking at the efficiency and technical changes.

Finally, we point out some limitations for our empirical application.
Firstly, data are not available for every year but only for seven years
over the time span from 2000 to 2012. Next, as discussed in Section 3,
although the output side of the electricity generation process is de-
scribed in much detail by the eGRID system, the input side is not so
detailed: only the fuel consumption is provided. As such, using name-
plate capacity, although done in several previous studies, clearly re-
presents an important limitation for our empirical application. After-
wards, in practice, plants also face environmental constraints. For
example, they have to respect some greenhouse gas emission restric-
tions. This aspect is neglected in our study. Finally, other reasons could
explain the performance differences. In our study, we focus our atten-
tion on economic reasons.

5. Conclusion

In this paper, we presented a new performance index and its de-
composition for multi-output settings. The new index, which takes the

form of a Malmquist productivity index (MPI), is specially designed for
multi-output producers for several reasons. Firstly, the index takes the
links between the inputs and the outputs into account. On the one hand,
it accounts for inputs jointly used to produce all the outputs. These
inputs give rise to economies of scope, which form a prime economic
motivation to produce multiple outputs. On the other hand, it includes
inputs allocated to specific output production processes. Next, the index
provides results for each output individually. Clearly, it is not obvious
that the causes in the performance changes are the same for each output
in multi-output contexts. Finally, the index is nonparametric in nature,
i.e. not based on any parametric/functional specification of the pro-
duction technology. In multi-output contexts, it is very difficult to im-
pose a specific production function and, importantly, this may have a
huge impact on the results.

We proposed an application for the US electricity plants over the
period 2000–2012. The results highlight that the aggregate perfor-
mances of the plants have slightly decreased for the period considered,
but this is mainly due to a negative performance change for renewable
electricity production, while the performance of non-renewable elec-
tricity production is positive but not large enough to compensate. Our
analysis also shows that the causes are completely different for each
type of electricity. We found an efficiency progress and a technical
regress for non-renewable electricity, and an efficiency regress and a
technological progress for renewable electricity. Finally, we highlighted
that multi-electricity plants are preferable for non-renewable electricity
production, while single-electricity plants are the best in the production
of renewable electricity.
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Appendix

Table 7
Results for total electricity generation

Year All Single Multi Mixed

Median Average Median Average Median Average Median Average

Malmquist productivity index
2012–2010 1.02 1.01 1.03 1.02 1.00 0.99 1.01 1.03
2010–2009 1.05 1.07 1.00 0.99 1.00 1.03 1.02 1.09
2009–2007 1.01 1.00 1.01 1.01 0.97 0.98 1.01 1.02
2007–2005 1.04 1.05 1.01 1.02 0.96 0.99 1.04 1.06
2005–2004 0.99 1.00 1.04 1.03 0.95 0.97 1.02 1.03
2004–2000 1.01 1.02 1.01 0.99 0.97 0.98 1.06 1.04
Efficiency change
2012–2010 1.04 1.03 0.99 1.00 1.03 1.02 1.05 1.07
2010–2009 1.08 1.09 1.02 1.01 1.04 1.02 1.06 1.15
2009–2007 1.03 1.02 0.98 0.99 1.01 1.00 1.05 1.04
2007–2005 1.05 1.06 1.01 1.02 0.99 1.00 1.07 1.08
2005–2004 1.01 1.00 0.97 0.98 1.02 1.01 1.05 1.05
2004–2000 1.00 1.01 1.00 1.00 1.01 1.02 1.06 1.08
Technical change
2012–2010 0.99 0.98 1.03 1.03 0.98 0.97 1.03 1.02
2010–2009 1.04 1.02 1.00 1.00 0.96 0.99 1.02 1.03
2009–2007 0.96 0.97 1.02 1.01 0.96 0.96 1.00 1.00
2007–2005 1.03 1.01 1.01 1.00 0.97 0.96 1.03 1.02
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2005–2004 1.00 0.99 1.02 1.00 0.98 0.96 1.02 1.01
2004–2000 0.97 0.98 1.00 0.99 0.95 0.95 1.00 1.00

Table 8
Results for non-renewable electricity generation

Year All Single Multi Mixed

Median Average Median Average Median Average Median Average

Malmquist productivity index
2012–2010 0.98 1 1.03 1.04 1 0.99 1.02 1.03
2010–2009 1.05 1.07 1.07 1.08 1.01 1.03 1.07 1.08
2009–2007 0.99 0.99 0.99 1 0.97 0.98 1 1.02
2007–2005 1.01 1.02 1.02 1.03 0.98 0.99 1.04 1.05
2005–2004 0.97 0.97 1 1.01 0.96 0.96 1.02 1.03
2004–2000 0.98 0.99 1 1 0.97 0.98 1.05 1.04
Efficiency change
2012–2010 0.96 0.99 1.04 1.01 1.01 0.98 1.05 1.07
2010–2009 1.02 1.01 1.06 1.03 1.04 0.99 1.1 1.15
2009–2007 0.95 0.99 0.98 0.98 1.01 1.00 1.03 1.04
2007–2005 0.97 1.01 1 0.99 0.99 1.00 1.06 1.08
2005–2004 0.98 1 1 0.97 0.99 1.01 1.06 1.05
2004–2000 0.96 0.98 0.96 0.97 1 1.02 1.07 1.08
Technical change
2012–2010 1.00 1.02 1.05 1.06 0.96 0.97 1 1.02
2010–2009 1.07 1.08 1.08 1.09 0.98 0.99 1.01 1.03
2009–2007 1.00 1.01 0.99 1 1 0.97 0.99 1.00
2007–2005 1.02 1.01 1 1 0.95 0.96 1 1.02
2005–2004 1.03 1.04 1.01 1.05 0.97 0.96 1 1.01
2004–2000 1.02 1.03 1 1.04 0.94 0.95 1.01 1.00

Table 9
Results for renewable electricity generation

Year All Single Multi Mixed

Median Average Median Average Median Average Median Average

Malmquist productivity index
2012–2010 1.02 1.03 1.02 1.02 – – 1.02 1.03
2010–2009 1.02 1.02 0.97 0.96 – – 1.03 1.02
2009–2007 1 1.01 0.97 0.98 – – 1.04 1.02
2007–2005 1.02 1.03 1 1.01 – – 1.03 1.04
2005–2004 0.99 1.02 0.99 1.02 – – 1.03 1.03
2004–2000 1.02 1.03 1 1 – – 1.03 1.04
Efficiency change
2012–2010 1.06 1.07 1.04 0.99 – – 1.07 1.08
2010–2009 1.1 1.12 1.08 1.10 – – 1.12 1.15
2009–2007 1.02 1.03 1.01 1.02 – – 1.03 1.04
2007–2005 1.06 1.05 1.05 1.04 – – 1.05 1.06
2005–2004 1.04 1.05 1.03 1.04 – – 1.04 1.06
2004–2000 1.05 1.07 1.05 1.04 – – 1.07 1.08
Technical change
2012–2010 0.95 0.96 0.97 0.96 – – 1 1.02
2010–2009 0.99 1.03 1 1.01 – – 1.05 1.04
2009–2007 0.98 0.97 0.98 0.97 – – 1.01 1.00
2007–2005 0.99 1 0.98 0.99 – – 1.04 1.03
2005–2004 0.96 0.97 0.97 0.96 – – 1.02 1.01
2004–2000 0.98 1 0.97 0.99 – – 1.02 1.00
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Table 10
One-sample KS −p values for total electricity generation

Year All Single Multi Mix

Malmquist productivity index
2012–2010 0.12 0.12 0.04 0.12
2010–2009 0.16 0.04 0.13 0.09
2009–2007 0.12 0.15 0.03 0.06
2007–2005 0.09 0.32 0.06 0.32
2005–2004 0.06 0.26 0.02 0.27
2004–2000 0.08 0.28 0.04 0.03
Efficiency change
2012–2010 0.23 0.05 0.13 0.42
2010–2009 0.35 0.07 0.23 0.38
2009–2007 0.10 0.04 0.16 0.28
2007–2005 0.18 0.19 0.18 0.38
2005–2004 0.05 0.05 0.17 0.32
2004–2000 0.07 0.06 0.10 0.27
Technical change
2012–2010 0.05 0.14 0.01 0.23
2010–2009 0.12 0.08 0.02 0.34
2009–2007 0.01 0.04 0.01 0.28
2007–2005 0.06 0.16 0.01 0.29
2005–2004 0.05 0.13 0.01 0.18
2004–2000 0.04 0.06 0.00 0.18

Table 11
One-sample KS −p values for non-renewable electricity generation

Year All Single Multi Mix

Malmquist productivity index
2012–2010 0.04 0.32 0.06 0.18
2010–2009 0.45 0.34 0.07 0.14
2009–2007 0.06 0.12 0.03 0.13
2007–2005 0.12 0.15 0.05 0.15
2005–2004 0.04 0.18 0.05 0.14
2004–2000 0.04 0.09 0.07 0.18
Efficiency change
2012–2010 0.03 0.02 0.18 0.17
2010–2009 0.09 0.08 0.12 0.54
2009–2007 0.07 0.07 0.06 0.12
2007–2005 0.05 0.10 0.05 0.15
2005–2004 0.05 0.05 0.07 0.08
2004–2000 0.07 0.03 0.08 0.10
Technical change
2012–2010 0.06 0.12 0.04 0.12
2010–2009 0.14 0.15 0.03 0.13
2009–2007 0.07 0.05 0.02 0.15
2007–2005 0.09 0.06 0.04 0.08
2005–2004 0.06 0.16 0.02 0.15
2004–2000 0.09 0.08 0.07 0.12

Table 12
One-sample KS −p values for renewable electricity generation

Year All Single Multi Mixed

Malmquist productivity index
2012–2010 0.12 0.06 – 0.10
2010–2009 0.08 0.02 – 0.12
2009–2007 0.08 0.01 – 0.08
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2007–2005 0.07 0.06 – 0.07
2005–2004 0.04 0.07 – 0.05
2004–2000 0.08 0.05 – 0.05
Efficiency change
2012–2010 0.13 0.12 – 0.12
2010–2009 0.25 0.13 – 0.1
2009–2007 0.12 0.08 – 0.04
2007–2005 0.08 0.07 – 0.09
2005–2004 0.08 0.15 – 0.07
2004–2000 0.14 0.21 – 0.06
Technical change
2012–2010 0.04 0.03 – 0.12
2010–2009 0.08 0.06 – 0.1
2009–2007 0.03 0.02 – 0.09
2007–2005 0.05 0.04 – 0.21
2005–2004 0.04 0.05 – 0.07
2004–2000 0.07 0.03 – 0.05

Table 13
Two-sample KS −p values per type of electricity

Year >MPI MPI1 2 >EC EC1 2 >TC TC1 2

All Single Mixed All Single Mixed All Single Mixed

2012–2010 0.01 0.02 0.06 0.02 0.01 0.38 0.54 0.59 0.15
2010–2009 0.12 0.03 0.08 0.01 0.08 0.32 0.53 0.48 0.18
2009–2007 0.04 0.02 0.12 0.04 0.02 0.43 0.6 0.51 0.25
2007–2005 0.03 0.03 0.09 0.01 0.04 0.18 0.32 0.38 0.23
2005–2004 0.04 0.06 0.1 0.01 0.03 0.39 0.33 0.39 0.24
2004–2000 0.03 0.08 0.08 0.01 0.01 0.22 0.23 0.29 0.32

Table 14
Two-sample KS −p values per type of plant

Year Single > Multi Single > Mixed Multi > Mixed

MPI MPI MPI1 MPI2 MPI MPI1 MPI2 MPI MPI1 MPI2

2012–2010 0.45 0.44 – 0.02 0.12 0.01 0.01 0.02 –
2010–2009 0.08 0.09 – 0.03 0.08 0.05 0.03 0.04 –
2009–2007 0.32 0.31 – 0.01 0.03 0.05 0.02 0.01 –
2007–2005 0.43 0.42 – 0.05 0.05 0.07 0.04 0.04 –
2005–2004 0.32 0.33 – 0.07 0.03 0.02 0.06 0.05 –
2004–2000 0.28 0.27 – 0.04 0.02 0.01 0.03 0.03 –

EC EC EC1 EC2 EC EC1 EC2 EC EC1 EC2

2012–2010 0.02 0.15 – 0.03 0.04 0.03 0.02 0.04 –
2010–2009 0.05 0.17 – 0.05 0.02 0.01 0.04 0.05 –
2009–2007 0.04 0.02 – 0.04 0.01 0 0.05 0.03 –
2007–2005 0.12 0.17 – 0.02 0.03 0.03 0.08 0.01 –
2005–2004 0.07 0.01 – 0.01 0.02 0.01 0.02 0.04 –
2004–2000 0.05 0.02 – 0.05 0.03 0.05 0.02 0.03 –

TC TC TC1 TC2 TC TC1 TC2 TC TC1 TC2

2012–2010 0.34 0.38 – 0.12 0.32 0.02 0.01 0.02 –
2010–2009 0.32 0.33 – 0.05 0.4 0.01 0 0.02 –
2009–2007 0.31 0.29 – 0.02 0.06 0.03 0.02 0.04 –
2007–2005 0.28 0.31 – 0.01 0.02 0.04 0.02 0.03 –
2005–2004 0.45 0.42 – 0.23 0.01 0.01 0.04 0.05 –
2004–2000 0.56 0.51 – 0.14 0.02 0 0.02 0.07 –
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