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Equilibrium and stability equations of functionally graded material (FGM) plate under thermal environ-
ment are formulated in this paper based on isogeometric analysis (IGA) in combination with higher-order
shear deformation theory (HSDT). The FGM plate is made by a mixture of two distinct components, for
which material properties not only vary continuously through thickness according to a power-law distri-
bution but also depend on temperature. Temperature field is assumed to be constant in plate surfaces and
uniform, linear and nonlinear through plate thickness, respectively. The governing equation is in nonlin-
ear form based on von Karman assumption and thermal effect. A NURBS-based isogeometric finite ele-
ment formulation is capable of naturally fulfilling the rigorous C1-continuity required by the present
plate model. Influences of gradient indices, boundary conditions, temperature distributions, material
properties, length-to-thickness ratios on the behavior of FGM plate are discussed in details. Numerical
results demonstrate excellent performance of the present approach.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Laminated composite plates made by stacking several lamina
layers together possess many favorable mechanical properties,
e.g. wear resistance, high ratio of stiffness, strength-to-weight
ratios, etc. Therefore, they are extensively used in aerospace, air-
craft structures, high-speed vehicle frames and so on. However,
an important feature in their designs is thermal effect. For an
example, the space vehicles flying at hypersonic speeds experience
extremely rapid temperature rise in very short time from aerody-
namic heating due to friction between the vehicle surface and
the atmosphere, e.g. in U.S. space shuttles, the temperature on
their outside surface increases to an attitude of 1500 �C for a few
minutes [1]. This can lead to harmful effects due to stress concen-
tration, cracking and de-bonding, which can occur at the interface
between two distinct layers [2,3]. To overcome this shortcoming, a
group of scientists in Sendai-Japan proposed an advanced material,
so-called functionally graded materials (FGMs) [4–6]. The most
common FGMs are the mixtures of a ceramic and a metal, for
which material properties vary smoothly and continuously in a
predetermined direction. Consequently, they enable to reduce the
thermal stresses due to smoothly transitioning the properties of
the components. Furthermore, they inherit the best properties of
the distinct components, e.g. low thermal conductivity, high ther-
mal resistance by ceramic part, ductility, durability and superiority
of fracture toughness of metal part. FGMs are now developed as the
structural components in many engineering applications [1].

In order to provide a clear understanding to the scientific and
engineering communities in the field of modeling, analysis and
design of FGM plate structures, many studies have been reported
by various researchers. For instant, Praveen and Reddy [7] studied
the nonlinear transient responses of FGM plates under thermal and
mechanical loadings using FEM with von Karman assumptions. Vel
and Batra [8,9] obtained three dimensional exact solutions for the
thermo-elastic deformation of FGM rectangular plates. Javaheri
and Eslami [10,11] investigated thermal buckling behavior of the
FGM plates. Ferreira et al. [12,13] performed static and dynamic
analysis of FGM plate based on HSDT using the mesh-free method.
Park and Kim [14] investigated thermal post buckling and vibra-
tion analyses of simply supported FGM plates by using FEM. Lee
et al. [15,16] developed the element-free kp-Ritz method to study
behavior of FGM plate. Also, developed smoothed finite element
methods based on triangular meshes were formulated to analyze
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Fig. 1. A functionally graded material layer.
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static, free vibration and elastic stability of FGM plates [17–19] and
so on.

In the aforementioned studies, it can be seen that for modeling
the plate structures, the formulation may be reduced to a linear
problem based on small displacement and strain assumptions. Lin-
ear solution can be obtained easily with low computational cost
and is a reasonable idealization. However, linear solution usually
deviates from real response of structures [20–23]. In some cases,
assumption of nonlinearity needs to be taken into account for ana-
lyst, e.g. post buckling phenomenon [24,25]. In other words, the
structures behave in large deformation manner. Therefore, geo-
metrically nonlinear analysis is employed to fully investigate the
plate behavior in the large deformation regime. Furthermore, sev-
eral plate theories are provided to predict accurately the structure
responses. Among them, classical plate theory (CPT) requires
C1-continuity elements and merely provides acceptable results
for thin plate, whilst first order shear deformation theory (FSDT)
is suitable for moderate and thick plate. However, it describes
incorrect shear energy part. Numerically, the standard FSDT-
based finite elements are too stiff and lead to shear locking. To
treat this phenomenon, some improved techniques such as
reduced integration [26], mixed interpolation of tensorial compo-
nents (MITC) [27,28], discrete shear gap (DSG) [17] elements, etc.
were adopted. On the other hand, HSDT models [29–31], which
took into account higher-order variations of the in-plane displace-
ments through thickness, were proposed. Consequently, they
enable to really describe shear strain/stress distributions with
the non-linear paths and traction-free boundary condition at the
top and bottom surfaces of the plate. Moreover, the HSDT models
provide better results and yield more accurate and stable solutions.
However, the HSDT requires C1-continuity elements that cause
some obstacles in the standard finite element formulations. This
requirement can be enforced by mesh-free method [32,33]. More
importantly, Hughes and his co-worker recently proposed a novel
numerical method – so-called isogeometric analysis (IGA)
[34,35], which yields higher-order continuity naturally and easily.
The core idea of this method is to integrate both geometric descrip-
tion and finite element approximation through the same basis
function space of B-spline or NURBS. The major strengths of this
method are that it is flexible to control the high continuity of basis
shape functions, e.g. Cp�1-continuity for pth-order NURBS, which
naturally fulfil higher-order continuity requirement of plate/shell
models [36–38] Furthermore, by removal mesh generation feature,
this method produces a seamless integration of computer aid
design (CAD) and finite element analysis (FEA) tools. As a result,
IGA simplifies the cost-intensive computational model generation
procedure, which is the major bottleneck in engineering analysis-
design [39]. After more ten years of development, IGA has been
widely applied in engineering and among them with FGM plate
structures. For example, Valizadeh et al. [40] and Yin et al. [41]
employed this method to study the static and dynamic behaviors
of FGM plates based on FSDT. Tran et al. [29,30,42] studied the sta-
tic bending, buckling load and also natural frequency of intact FGM
plates and cracked ones [43] based on HSDT and then extended
their previous work for thermal buckling analysis with various
types of temperature distribution [44]. Recently, Jari et al. [45]
studied nonlinear thermal analysis of FGM plates based on C0 HSDT
with 7 DOFs/control point. In this work, the critical buckling tem-
perature of the plates was derived from the linear thermal buckling
analysis. However, FGM is not symmetric as its material properties
and temperature field vary in the thickness direction. Hence, the
bifurcation phenomenon does not occur, except in some special
cases, e.g. clamped plates [46,47]. Generally, the plates will be
undergone bending due to thermal moments, which are developed
together with thermal membrane forces as temperature changes.
Thermal stability analysis of FGM plates seems to be confusing in
the literature. To make this issue clear, in this paper equilibrium
and stability equations of FGM plates under thermal environment
are introduced and solved by an efficient computational approach
based on IGA and HSDT.

The paper is outlined as follows. The next section introduces the
theoretical formulation for functionally graded plate. The von
Karman assumption is employed to depict behavior of the plate
structure in the large deformation regime. Assumption of temper-
ature field due to uniform, linear and nonlinear distribution
through the plate thickness is described in Section 3. Section 4 pre-
sents a framework of isogeometric analysis for the plate structure.
Section 5 gives the solution procedure for the plate problems,
which can be categorized into two groups: geometrically nonlinear
and nonlinear eigenvalue analysis for tracing the post-buckling
paths. The present formulation is verified firstly by comparing with
other available results in the literature and the influences of
gradient indices, boundary conditions, temperature distributions,
material properties and length-to-thickness ratio on the behavior
of FGM plate are then examined in Section 6. Finally, this article
is closed with some concluding remarks.

2. A background on functionally graded plates

2.1. Functionally graded material

Functionally graded material is a composite material, which is
commonly fabricated by mixing two distinct material phases, i.e.
ceramic and metal, for which properties change continuously along
certain dimensions of the structure, as shown in Fig. 1. It is
assumed that the volume fractions of the material phases are given
by the power-law type function and satisfy the unity, i.e.

VcðzÞ ¼ 1
2
þ z
h

� �n

; Vc þ Vm ¼ 1 ð1Þ

where n 2 Rþ is the power index or gradient index. Then, the effec-
tive material properties, such as the Young’s modulus (E), shear
modulus (l), Poisson’s ratio (m), the density (q), thermal conductiv-
ity (k) and thermal expansion (a) can be estimated according to the
rule of mixture as follows

Pe ¼ PcVc þ PmVm ð2Þ
Note that the subscripts m, c and e refer to metal, ceramic and

effective constituents, respectively.
Fig. 2 illustrates the distribution of the effective Young’s modu-

lus through thickness of Al/Al2O3 FGM plate via the power index n.
As observed, n = 0? Vc ¼ 1;Vm ¼ 0, the structure is fully ceramic
and when n =1? Vc ¼ 0;Vm ¼ 1, the homogeneous metal is
retrieved. Moreover, Vcðh=2Þ ¼ 1 and Vmð�h=2Þ ¼ 1 means that
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Fig. 2. The effective modulus of Al/Al2O3 FGM plate.
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fully ceramic and metal phase on the top and the bottom surfaces,
respectively.

In thermal environment, high temperature makes a significant
change in mechanical properties of the constituent materials.
Therefore, it is essential to take into account the temperature-
dependent material property to accurately predict the mechanical
responses of FGM structures. According to Ref. [48], the properties
of the common structural ceramics and metals are expressed as a
nonlinear function of temperature

P ¼ P0ðP�1T
�1 þ 1þ P1T þ P2T

2 þ P3T
3Þ ð3Þ

where P0, P�1, P1, P2 and P3 are the coefficients of temperature,
which can be found in Ref. [49] as unique parameters for each con-
stituent material.

2.2. Plate formulation

According to the generalized shear deformation plate theory
[30], the displacement of an arbitrary point u ¼ fu;v ;wgT can be
written as

u ¼ u1 þ zu2 þ f ðzÞu3 ð4Þ
where u1 ¼ fu0v0w0gT is the displacement components in x, y and z

axes, u2 ¼ �fw0;xw0;y0gT and u3 ¼ fbxby0gT are the rotations in the
xz, yz and xy planes, respectively. The distributed function is chosen

following Reddy’s theory [50] as f ðzÞ ¼ z� 4z3=ð3h2Þ.
Enforcing the assumptions of small strains, moderate rotations

and large displacements, the von Karman nonlinear theory is
adopted in strain–displacement relations as follows [51]

ex
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cxy
cxz
cyz

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

¼

u;x

v ;y

u;y þ v ;x

u;z þw;x

v ;z þw;y

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

þ 1
2
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;x

w2
;y

2w;xw;y

0
0

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

ð5Þ

By using the assumed displacement field in Eq. (4), the strain
vector with separated in-plane strain e and shear strain c are given
as

e
c

� �
¼ em

0

� �
þ zj1

0

� �
þ f ðzÞj2

f 0ðzÞb

� �
ð6Þ

where the in-plane, the bending and the shear strains are defined,
respectively,
em ¼
u0;x

v0;y

u0;y þ v0;x

2
64

3
75þ 1

2

w2
0;x

w2
0;x

2w0;xw0;y

2
64

3
75 ¼ eL þ eNL

j1 ¼ �
w0;xx

w0;yy

2w0;xy

2
64

3
75; j2 ¼

bx;x

by;y

bx;y þ by;x

2
64

3
75; b ¼ bx

by

" # ð7Þ

In Eq. (7) the nonlinear component of in-plane strain can be
rewritten as

eNL ¼ 1
2
Ahh ð8Þ

where

Ah ¼
w0;x 0
0 w0;y

w0;y w0;x

2
64

3
75 and h ¼ w0;x

w0;y

� �
ð9Þ

Regarding thermal effect, the thermal strain is given by

eth ¼ aeðzÞDTðzÞ½1 1 0�T ð10Þ
in which aeðzÞ is the effective thermal coefficient according to
Eq. (2) and DT is the temperature change defined as

DTðzÞ ¼ TðzÞ � Ti ð11Þ
where Ti is the initial temperature and T(z) is the current
temperature.

In these plate theories, the transverse normal stress rz is
assumed to be zero. Hence, the reduced constitutive relation for
the FGM plate is given by

r
s

� �
¼ C 0

0 G

� �
e� eth

c

( )
ð12Þ

where the material matrices are given as

C ¼ Ee

1� m2e

1 me 0
me 1 0
0 0 ð1� meÞ=2

2
64

3
75 ð13Þ

G ¼ Ee

2ð1þ meÞ
1 0
0 1

� �
ð14Þ

The in-plane forces, moments and shear forces are calculated by

N
M
P

8><
>:

9>=
>; ¼

Z h=2

�h=2
r

1
z

f ðzÞ

8><
>:

9>=
>;dz and Q ¼

Z h=2

�h=2
f 0ðzÞsdz ð15Þ

Substituting Eq. (12) into Eq. (15), stress resultants are rewrit-
ten in matrix form as

N
M
P
Q

8>>><
>>>:
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ð16Þ

in which

Aij;Bij;Dij; Eij; Fij;Hij ¼
Z h=2

�h=2
ð1; z; z2; f ðzÞ; zf ðzÞ; f 2ðzÞÞCijdz

Ds
ij ¼

Z h=2

�h=2
½f 0ðzÞ�2Gijdz

ð17Þ

and the thermal stress resultants are the functions of the incremen-
tal temperature DT .
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>; 1 z z3
	 


DTdz ð18Þ

It is evident that the function f 0ðzÞ ¼ 1� 4z2=h2 is a parabolic
function of thickness and produces zero values at z ¼ �h=2. It
means that the traction-free boundary condition is automatically
satisfied at the top and bottom plate surfaces. Furthermore, the
transverse shear forces are described parabolically through the
plate thickness. Hence, the shear correction factors are no longer
required in this model.

Employing the principle of virtual displacement, the variation of
total energy of the plate can be derived by

dP ¼ dUe � dV ¼
Z
X
dêT r̂dX�

Z
X
duT f zdX ¼ 0 ð19Þ

where f z is the transverse load.

3. Type of temperature distribution

Under thermal environment, the temperature is assumed to be
uniform on the top and bottom surfaces and varies through the
plate thickness. Some case studies are given as

3.1. Uniform temperature rise

It is assumed that the reference temperature initially equals to
Ti and then uniformly increases to a final value at which the plate is
buckled. Therefore, the temperature change DT ¼ Tf � Ti is con-
stant everywhere in the plate. Substituting it into Eq. (18) leads
to the critical buckling temperature as follows

DTcr ¼ Nth
cr=

~X

where ~X ¼
Z h=2

�h=2

EeðzÞ
1þ meðzÞaeðzÞdz

ð20Þ
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3.2. Linear temperature across the plate thickness

Consider a FGM plate, which initial temperature at the ceramic-
rich and metal-rich surfaces are Tc and Tm, respectively. Tempera-
ture is assumed to be linear distribution through the plate thick-
ness by

TðzÞ ¼ ðTc � TmÞ z
h
þ 1
2

� �
þ Tm ð21Þ

Substituting Eq. (21) into Eq. (11) and then solving Eq. (18), the
critical buckling temperature difference between two plate sur-
faces DT ¼ Tc � Tm is calculated as

DTcr ¼ Nth
cr � ~XðTm � TiÞ

~Y

where ~Y ¼
Z h=2

�h=2

EeðzÞaeðzÞ
1þ meðzÞ

z
h
þ 1
2

� �
dz

ð22Þ
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Fig. 3. Temperature distributions through the thickness of Al/Al2O3 FGM plate.
3.3. Non-linear temperature change across the thickness

The temperature field in the FGM plate follows the one-
dimensional steady state heat conduction equation and the bound-
ary conditions are given by

� d
dz

kðzÞdT
dz

� �
¼ 0; Tðh=2Þ ¼ Tc; Tð�h=2Þ ¼ Tm ð23Þ

The solution of Eq. (23) is obtained in Fourier series [52,53] as:
TðzÞ ¼ Tm þ gðzÞðTc � TmÞ ð24Þ
where

gðzÞ¼ z
h
þ1
2

� �X1
i¼0

1
niþ1

z
h
þ1
2

� �ni km�kc
km

� �i
,X1

i¼0

1
niþ1

km�kc
km

� �i

ð25Þ
Fig. 3 illustrates the effect of the gradient index n on the tem-

perature distribution through the thickness of the Al/Al2O3 FGM
plate subjected to a thermal load, where the top and bottom sur-
faces are held at 300 �C and 20 �C, respectively. It is evident that
the temperature in the FGM plates follows a nonlinear distribution
and is always lower than that in the homogenous plates. In addi-
tion, there is linearly distributed temperature through thickness
similar to Eq. (21) in case of the homogeneous plate.

Being similar to the previous types, after solving Eq. (18) with
temperature field described in Eq. (24), the critical buckling tem-
perature difference between two opposite plate surfaces becomes

DTcr ¼ Nth
cr � ~XðTm � TiÞ

~Z

where ~Z ¼
Z h=2

�h=2

EeðzÞaeðzÞ
1þ meðzÞ gðzÞdz

ð26Þ
4. Isogeometric nonlinear analysis of plate structure

4.1. A brief of isogeometric analysis

Isogeometric approach (IGA) is proposed by Hughes and his co-
workers [34] with the primary original purpose is to enable a tigh-
ter connection between computer aided design (CAD) and finite
element analysis (FEA). The main idea of this method is to utilize
the same basis functions such as: B-spline, non-uniform rational
B-spline (NURBS), etc. in both geometry description and finite
approximation. A B-splines basis of degree p is generated from a
non-decreasing sequence of parameter value ni, i ¼ 1; . . .nþ p ,
called a knot vector N ¼ fn1; n2; . . . ; nnþpþ1g , in which
n1 6 n2 6 � � � 6 nnþpþ1. ni 2 R is the ith knot and n is number of
the basis functions. In the so-called open knot, the first and the last
knots are repeated by p + 1 times and very often get values of
n1 ¼ 0 and nnþpþ1 ¼ 1.

Using Cox-de Boor algorithm, the univariate B-spline basis func-
tions Ni;pðnÞ are defined recursively on the corresponding knot
vector



L.V. Tran et al. / Composite Structures 140 (2016) 655–667 659
 Np
i ðnÞ ¼

n� ni
niþp � ni

Np�1
i ðnÞ þ niþpþ1 � n

niþpþ1 � niþ1
Np�1

iþ1 ðnÞ

as p ¼ 0;N0
i ðnÞ ¼

1 if ni 6 n < niþ1

0 otherwise

8><
>:

ð27Þ

By a simple way, so-called tensor product of univariate
B-splines, the multivariate B-spline basis functions are generated

Np
i ðnÞ ¼

Yd
a¼1

Npa
ia
ðnaÞ ð28Þ

where parametric d ¼ 1;2;3 according to 1D, 2D and 3D spaces,
respectively. Fig. 4 gives an illustration of bivariate B-splines basic
based on tensor product of two knot vectors N ¼ f0; 0;0;
1
5 ;

2
5 ;

3
5 ;

3
5 ;

4
5 ;1;1;1g and H ¼ f0; 0;0;0; 13 ; 13 ; 23 ; 23 ;1;1;1;1g in two para-

metric dimensions n and g, respectively.
After defining the B-spline basis functions, a domain, including

B-spline curve, surface or solid, can be constructed from a linear
combination of them with control points Pi

SðnÞ ¼
X
i

Np
i ðnÞPi ð29Þ

However, for some conic shapes (e.g. circles, ellipses, spheres,
etc.), NURBS offer a more generalized way in form of rational func-
tions as

Rp
i ðnÞ ¼ Np

i ðnÞfi=
X
j

Np
j ðnÞfj ð30Þ

where fi > 0 is the so-called individual weight corresponding to
B-splines basis functions Np

i ðnÞ . It is seen that NURBS basic will
become B-spline, when the individual weight is constant.

4.2. Discrete system equation

Being different from traditional finite element method, which
utilizes the Lagrange basis functions in approximating the
unknown solutions and the geometry, NURBS-based IGA employs
the NURBS basis ones from geometric description to construct
the approximated solution

uhðnÞ ¼
X
A

RAðnÞqA ð31Þ

where qA ¼ ½u0Av0AbxAbyAw0A�T denotes the vector of nodal degrees
of freedom associated with the control point PA.

Substituting Eq. (31) into Eq. (7), the generalized strains can be
rewritten in matrix form as:

ê ¼ BL þ 1
2
BNL

� �
q

Fig. 4. Bivariate B-splin
where BL is the linear infinitesimal strain

BL
A ¼ ½ðBm

A ÞTðBb1
A ÞTðBb2

A ÞTðBs
AÞT �

T
ð32Þ

in which

Bm
A ¼

RA;x 0 0 0 0
0 RA;y 0 0 0
RA;y RA;x 0 0 0

2
64

3
75

Bb1
A ¼ �

0 0 RA;xx 0 0
0 0 RA;yy 0 0
0 0 2RA;xy 0 0

2
64

3
75; Bb2

A ¼
0 0 0 RA;x 0
0 0 0 0 RA;y

0 0 0 RA;y RA;x

2
64

3
75;

Bs
A ¼ 0 0 0 RA 0

0 0 0 0 RA

� �
; B g

A ¼ 0 0 RA;x 0 0
0 0 RA;y 0 0

� �
and the nonlinear strain matrix BNL is found to be a linear function
of the displacement

BNL
A ðqÞ ¼ Ah

0

� �
B g
A ð33Þ

Variation of the strain is defined as

dê ¼ ðBL þ BNLÞdq ð34Þ
Substituting Eqs. (16) and (34) into Eq. (19) and eliminating the

virtual displacement vector dqT , the governing equation can be
written in the following matrix form

ðKL þ KNL � K0Þq ¼ F ð35Þ
in which KL and KNL are the linear and nonlinear stiffness matrices,
respectively, whilst K0 is the initial stress stiffness matrix due to the
initial compressive load by temperature

KL ¼
Z
X
ðBLÞTD̂BLdX ð36Þ

KNL ¼ 1
2

Z
X
ðBLÞT D̂BNLdXþ

Z
X
ðBNLÞTD̂BLdXþ

Z
X

1
2
ðBNLÞT D̂BNLdX

ð37Þ

K0 ¼
Z
X
ðB gÞT Nth

x Nth
xy

Nth
xy Nth

y

" #
B gdX ð38Þ

and F is the load vector depending on mechanical and thermal loads

F ¼
Z
X
ðBLÞT r̂0 þ RT f zdX ð39Þ
es basic functions.



Table 1
Material properties of functionally graded material.

E (GPa) m k (W/m K) a (10�6/K) q (kg/m3)

Aluminum (Al) 70 0.3 204 23 2707
Alumina (Al2O3) 380 0.3 10.4 7.2 3800
Zirconia (ZrO2) 151 0.3 2.09 10 3000
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Fig. 5. The load–deflection curves of an isotropic square plate under SSSS1 and
SSSS3 boundary conditions.
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5. Solution procedure

Depending on value of load vector, nonlinear analysis of FGM
plates can be classified into two groups: nonlinear bending and
nonlinear eigenvalue analyses.

5.1. Nonlinear bending analysis

To solve the nonlinear equilibrium equation in Eq. (35), an iter-
ative Newton–Raphson technique is employed. Let’s introduce a
residual force as

uðqÞ ¼ ðKL þ KNLðqÞ � K0Þq� Fext ! 0 ð40Þ
The residual force represents the error in this approximation

and tends to zero during iteration. If iq , the approximate trial solu-
tion at the ith iteration, makes unbalance residual force, an
improved solution iþ1q is then suggested as

iþ1q ¼ iqþ Dq ð41Þ
The increment displacement can be defined by

Dq ¼ ½F� ðKL þ iKNLðiqÞ � K0Þiq�=KT ð42Þ
where KT is called tangent stiffness matrix is defined as

KT ¼ @uðiqÞ
@iq

¼ ~KNL þ Kg ð43Þ

in which the matrix ~KNL is strongly dependent on displacement

~KNL ¼
Z
X
ðBL þ BNLÞT D̂ðBL þ BNLÞdX ð44Þ

and the geometric stiffness matrix is given by

Kg ¼
Z
X
ðB gÞT Nx Nxy

Nxy Ny

� �
ðB gÞdX ð45Þ

It is noted that being different from the initial stress stiffness
matrix, K0, the geometric stiffness matrix is calculated due to the
internal forces according to Eq. (16).

5.2. Nonlinear eigenvalue analysis

For a case of the homogeneous plates, under uniform tempera-
ture rise the thermal moments in Eq. (18) are equal to zero and
only membrane forces are generated. Thus, the initially perfect
plate is still flat with no transverse deflection. As a result, there
is no effect of geometrical nonlinearity and Eq. (35) is simplified as

ðKL � kK0Þq ¼ 0 ð46Þ
where k 2 Rþ is the load factor.

This is called linear buckling equation and is used to determine
the critical value of loading for a particular plate. As temperature
increases to a critical point, the plate suddenly buckls and may lose
its load carrying capacity, but it is typically capable of working and
carrying considerable additional load before the collapse or ulti-
mate load is reached. In some cases this is even several times
higher than the critical load [54]. This is called the post-buckling
phenomenon. At this time, the plate structure undergoes a large
deformation. Therefore, the effect of geometric nonlinearity based
on von Karman nonlinear strain must be consider in governing
equation as:

ðKL þ KNL � kK0Þq ¼ 0 ð47Þ
In case of FGM plate, because of un-symmetric material distri-

bution through the thickness, bending moments, which forces
the plate laterally deform, develop together with the membrane
forces during temperature change. Consequently, the plate is
deflected as soon as thermal load is applied. Thus, the bifurcation
phenomenon does not occur. However, for a special case, that is
clamped edges, the supports are capable of handling the produced
thermal moments [25,46,47,55]. It maintains the plate in
un-deformed pre-buckling state. Therefore, buckling bifurcation
phenomenon does exist. FGM properties are also function of
temperature as shown in Eq. (3). Thus, solution of Eq. (47), which
is a function of both the nodal variables q and temperature T(z),
should be solved by the incremental iterative methodology.

Firstly, using thermo-elastic properties at Tm (the final temper-
ature at the plate bottom), the smallest eigenvalue (load factor)
and its corresponding eigenvector are obtained from the linear
eigenvalue equation, Eq. (46). The buckling load, computed from
multiplying the initial load with the load factor, is utilized to calcu-
late the critical buckling temperature difference using Eqs. (20),
(22) and (26) according to the type of temperature distribution.
Next, the thermo-elastic properties at T ¼ Tm þ DTcr is updated.
Besides, the eigenvector is normalized and scaled up to desired
amplitude to make sure that its magnitude is kept constant
for each displacement incremental step. Then, it is used as the
displacement vector for evaluation of the nonlinear stiffness.
Eq. (47) is solved to obtain the load factor and the associated
eigenvector. Subsequently, updated temperature T is implemented.
Convergence is verified by using a desired tolerance, i.e. e = 0.01. If
this is not satisfied, all the matrices are updated at the updated
temperature by current load factor and displacement vector
according to current buckling mode shape. Eq. (47) is solved again
to obtain the load factor and buckling mode shape. This iterative
procedure keeps going until the convergence of the thermal
buckling temperature is achieved.

6. Numerical examples

This section focuses on studying the nonlinear behavior of FGM
plate, for which material properties are listed in Table 1, under
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transverse and thermal load. It is assumed in the latter that the
temperature is uniform on the top and bottom surfaces and varies
through the thickness direction as a constant, linear or nonlinear
function. In these problems, we assume that the plate is con-
strained on all edges by:

– Simply supported condition, which is divided in two cases:
movable and immovable in the in-plane directions.

Movable edgeðSSSS1Þ : v0 ¼ w0 ¼ by ¼ 0 on x ¼ 0; L
u0 ¼ w0 ¼ bx ¼ 0 on y ¼ 0;W

�
ð48Þ

Immovable edgeðSSSS2Þ : u0 ¼ v0 ¼ w0 ¼ by ¼ 0 on x ¼ 0; L
u0 ¼ v0 ¼ w0 ¼ bx ¼ 0 on y ¼ 0;W

�
ð49Þ

Immovable edgeðSSSS3Þ : u0 ¼ v0 ¼ w0 ¼ 0 on all edges ð50Þ
– Clamped support

u0 ¼ v0 ¼ w0 ¼ bx ¼ by ¼ 0
w0;x ¼ w0;y ¼ 0

�
on all edges ð51Þ
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Fig. 9. Temperature-deflection curves of SSSS2 square Al/Al2O3 plate (L/h = 100)
subjected to nonlinear temperature rise under linear analysis (in dash line) and
nonlinear one (in solid line).
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Fig. 10. Thermal post-buckling paths of SSSS2 square Al/Al2O3 plate (L/h = 100)
under nonlinear temperature rise.
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Fig. 11. Thermal post-buckling paths of the Al/Al2O3 plate (n = 1, L/h = 100).

662 L.V. Tran et al. / Composite Structures 140 (2016) 655–667
The Dirichlet boundary condition (BC) on u0;v0;w0; bx and by is
easily treated as in the standard FEM, while the enforcement of
Dirichlet BC for the derivatives w0;x;w0;y can be solved as follows
an idea of rotation-free of thin shell [56,57]. The idea is to impose
zero deflection for the control points, which are adjacent to the
boundary control points.

For convenience, the following normalized transverse displace-
ment, in-plane stresses and shear stresses are expressed as:

�w ¼ w
h
; �r ¼ rh2

f za2
; �s ¼ sh

f za
; �P ¼ f za

4

Emh
4

6.1. Nonlinear bending analysis

In order to validate the present formulation, a moderate
(L/h = 10) isotropic square plate (m = 0.3) subjected to a uniformly
distributed load is first considered. Fig. 5 shows the variation of
the central deflection �w versus load parameter �P of this plate under
two types of boundary conditions: SSSS1 and SSSS3. It can be seen
that the present solutions are in excellent agreement with those of
FEM reported by Reddy [51].

Next, the geometrically nonlinear behavior of Al/ZrO2 plate in
dimension as length L = 0.2 m and thickness h = 0.01 m is investi-
gated. The plate is subjected to uniformly distributed load, which
is increased sequential to equal to f z ¼ �107 N/m2 after five steps.
Fig. 6 shows the variation of the load-central deflection curves via
power index n. It should be noted that, index n = 0 corresponds to
the ceramic plate, whilst n =1 indicates the metal plate. As
expected, the deflection response of FGM plates is moderate for
both linear and nonlinear cases compare to that of ceramic (stiffer)
and metal (softer) plates. One more interesting point may be noted
that the nonlinear deflections are smaller than linear ones and
their discrepancy increases by increasing load. This is due to add-
ing in the overall stiffer stiffness matrix by the nonlinear stiffness
matrix KNL, which strongly depends on the deflection. Fig. 7 plots
the stress distributions through the plate thickness of the FGM
plate (n = 1) via the change of load intensity. It can be seen that
the effect of nonlinearity reduces the amplitude of the normalized
stresses. Regarding the HSDT, the shear stress distributes as a curve
with traction-free boundary condition at the top and bottom sur-
faces of the plate.

By enforcing the temperature field to this plate as Tm = 20 �C
and Tc = 300 �C at the bottom and top surfaces, respectively, the
mechanical load – deflection curves via gradient index are plotted
in Fig. 8 in both cases of linear and nonlinear analyses. It is seen
that the behavior of deflection under thermo-mechanical load is
quite different from purely mechanical load as shown in Fig. 6.
Because the higher temperature at the top surface causes the ther-
mal expansion, the plates result in upward deflections. Among
them, the metallic plate is found to be very sensitive to the temper-
ature with the largest upward displacement. Then the deflection
varies from positive side to negative side when the mechanical
load increases. The similar tendency is observed for nonlinear anal-
ysis as compared with linear one except that the nonlinear deflec-
tions are larger than the linear ones under purely thermal load.
This is due to the fact that development of the initial stress stiff-
ness matrix K0, which is generated by thermal in-plane forces,
reduces the overall plate stiffness. Another difference from linear
solution is that the nonlinear results cannot be superimposed.
For instant, as n = 0 the total deflection �w ¼ �0:3963 is higher than
a sum of �w ¼ �0:4385 and �w ¼ 0:124 in case of purely transverse
and thermal load.
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Let’s continuously investigate behavior of the simply supported
square Al/Al2O3 plate subjected to only thermal load. Fig. 9 reveals
the non-dimensional centre deflection via gradient temperature
and power index. It can be seen that the plate is immediately
bended toward the upper side as soon as temperature is enforced
because of presence of extension-bending coupling effect due to
un-symmetric material distribution through the thickness. For a
comparison purpose, linear solutions are also supplied by neglect-
ing the nonlinear stiffness matrix. It is observed that as tempera-
ture rises, increase in the thermal in-plane forces leads the plate
stiffness to tend toward zero. As a result, the transverse displace-
ment increases rapidly and runs to infinitive. It may be physically
incorrect because the plate experiences large deflection at this
time. So, von Karman nonlinear strain should be considered in
the plate formulation. With the nonlinear effect, plate becomes
stiffer and enables to bear higher temperature rise.

Fig. 10 depicts the temperature – central deflection curves using
various values of gradient index n. It is noted that homogeneous
plates exhibit bifurcation buckling paths, whilst FGM plates show
no bifurcation phenomenon. Furthermore, decrease in the gradient



 
Table 2
Critical buckling temperature of FGM circular plate under temperature rise.

n Temp. rise Present IGA [44] FEM [61] Closed form solution [60]
TSDT FSDT FSDT CPT

0 Uniform 12.7298 12.7247 12.713 12.712 12.716
Nonlinear 25.4596 25.4494 25.426 25.924 25.433

0.5 Uniform 7.2128 7.2107 7.203 7.202 7.204
Nonlinear 19.0255 19.0193 18.996 18.996 19.002

1 Uniform 5.9144 5.9128 5.907 5.906 5.907
Nonlinear 15.3970 15.3929 15.377 15.373 15.378

Fig. 16. Buckling modes of the clamped circular Al/Al2O3 plate (n = 1, R/h = 100)
under uniform temperature rise.

664 L.V. Tran et al. / Composite Structures 140 (2016) 655–667
index n increases the thermal carrying capability of the plate. In
Fig. 11, for comparison aim, the nonlinear bending behavior of
Al/Al2O3 plate (n = 1) under uniform, linear and nonlinear temper-
ature rise is studied. Herein, the plate boundaries are constrained
by two simply supported conditions: movable edges (SSSS1) and
immovable edges (SSSS2). It is found that at an enough high tem-
perature level, the uniform temperature distribution produces
more transverse displacement in the plates than linear and nonlin-
ear temperature distributions. In addition, movable edge condition
(SSSS1) helps the plate to undergo smaller deformation than
immovable edge one (SSSS2). This is because weaker edge support
and movability of in-plane displacements around all edges (except
four corners), as shown in Fig. 12, reduce the thermal effect on the
plate. As noted that for clear vision, the in-plane displacements are
scale by 1000.

6.2. Thermal post-buckling analysis

In this sub-section, two examples, for which solutions are avail-
able in the literature, are considered in order to validate the effi-
ciency of the present method for the thermal instability. Firstly,
the thermal post-buckling temperature – deflection curve of a sim-
ply supported square plate (L/h = 10, m = 0.3, a = 10�6/�C) under
uniform temperature rise is plotted in Fig. 13. The obtained results
are compared with those of Bhimaraddi and Chandashekhara [58]
using the parabolic shear deformation theory and the closed form
solutions by Shen [24] based on higher-order shear deformation
plate theory. Herein, it is evident that identical results are obtained
in comparison with Shen’s solutions for both perfect and imperfect
plates (initial deflection w�=h ¼ 0:1). Herein, obtained critical
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Fig. 15. Bifurcation buckling paths of the clamped circular Al/Al2O3 p
temperature DT�
cr ¼ aDTcr � 104 is as same as Shen’s result [24]

with the value of 119.783.
Secondly, for the post-buckling path of a clamped skew plate

(skew angle = 45�, E = 1GPa, m = 0.3, a = 10�6/�C) as depicted in
Fig. 14, the present solution is compared to that of Prabhu and Dur-
vasula [59]. In this example, the temperature is normalized as

T� ¼ TcrEaL2h=ðp2DÞ with the flexural rigidity D ¼ Eh3
=12ð1� m2Þ.

An excellent agreement is again observed.
Next, let us consider a clamped circular plate with radius-to-

thickness ratio R/h = 100 subjected to uniform and nonlinear
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late (R/h = 100) under uniform and nonlinear temperature rise.



 
Table 3
Temperature dependent coefficients of Si3N4 and SUS304.

Material Property P�1 P0 P1 P2 P3

Silicon nitride Si3N4 E (Pa) 0 3.4843e11 �3.0700e�4 2.1600e�7 �8.946e�11
m 0 0.24 0 0 0
a (1/K) 0 5.8723e�6 9.0950e�4 0 0
k (W/m K) 0 13.723 �1.0320e�3 5.47e�7 �7.88e�11

Stainless steel SUS304 E (Pa) 0 2.0104e11 3.0790e�4 �6.534e�7 0
m 0 0.3262 �2.00e�4 3.80e�7 0
a (1/K) 0 1.2330e�5 8.0860e�4 0 0
k (W/m K) 0 15.379 �1.26e�3 2.09e�6 �7.22e�10

 ΔΔT
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temperature rise. The plate is made from Al/Al2O3, for which mate-
rial properties are assumed to be independent of temperature. The
comparison of critical temperature of this plate is listed in Table 2.
It is observed that the present results agree well with the closed-
form solutions [60] and FEM’s one [61] using a three-node shear
flexible plate element based on the field-consistency principle as
well as the solutions based on TSDT [44].

Furthermore, Fig. 15 shows the effect of power index n on the
thermal post-buckling paths of the plates under the uniform and
non-linear temperature rise. It should be noted that in case of non-
linear temperature rise, it is assumed that no temperature changes
in the bottom of the plate, DTm ¼ 0. The following remarks are
concluded:

– The thermal resistance of the FGM plates reduces due to
increase in the material gradient index, n, because of the stiff-
ness degradation by the higher metal inclusion, e.g. the thermal
resistance is the highest if the plate is fully ceramic (n = 0) and
the lowest if the homogeneous metal plate is retrieved (n =1).

– If we can keep the temperature varying non-uniformly through
the thickness, FGM plates can resist higher buckling
temperature.

– The clamped plates exhibit a bifurcation-type of instability,
which is vertically symmetric.

– It is also observed that, after achieving the bifurcation point, the
post-buckling temperature increases monotonically with the
increase in the transverse displacement and suddenly drops to
the secondary instability path. The transition from primary
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Fig. 17. The effective Young modulus of Si3N4/SUS304 plate at specified temper-
ature: T = 0 K (solid line), T = 300 K (dashed line), T = 1000 K (dash dot line).
post-buckling path to the secondary one is caused by redistribu-
tion of post-buckling displacement mode shape. The maximum
transverse displacement shifts from the plate centre towards
one plate corner. This phenomenon can be seen in the reports
for angle-ply composite plate by Singha et al. [62] and FGM
plates by Prakash et al. [46,47]. After the secondary instability,
the post-buckling temperature slightly increases due to
increase in deflection. This point is clearly illustrated in Fig. 16.
a) L/h =100 

b) L/h =20  

 ΔΔT

Fig. 18. Thermal post-buckling paths of Si3N4/SUS304 FGM plate via various power
indices and length-to-thickness ratios L/h.
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6.3. Temperature-dependent material Si3N4/SUS304 plate

Finally, the thermal post-buckling of temperature-dependent
material square plate, made of Silicon nitride (Si3N4) and Stainless
steel (SUS304), is investigated. Their material properties are func-
tions of temperature as indicated in Eq. (3) with the coefficients
listed in Table 3 [49]. An example of the effect of temperature
change on material properties of Si3N4/SUS304 FG plate, i.e. Young
modulus is illustrated in Fig. 17. It is observed that increase in tem-
perature reduces Young modulus magnitude of both isotropic
(n = 0) and FGM (n = 1, 10) plates.

Fig. 18 reveals the thermal post-buckling behaviors for Si3N4/
SUS304 FGM plate with various power indices n = 0, 1, 10. The
post-buckling paths for temperature-dependent and
temperature-independent are presented in solid and dashed
curves, respectively. Herein, the results considering temperature-
independent material property (values are estimated at
T0 = 300 K) are also presented for comparison purpose. It is
observed that the thermal post-buckling curve becomes lower
when considering the thermal dependent properties and increase
in value of n. Furthermore, with thin plate (L/h = 100), the discrep-
ancy between temperature-independent solutions and
temperature-dependent solutions is insignificant due to the very
small buckling temperature. As expected, with an increase in the
length-to-thickness ratio, the critical buckling temperature
increases accordingly.

7. Conclusion

We presented a simple and efficient formulation relied on the
framework of NURBS-based IGA for nonlinear bending and post-
buckling analysis of FGM plate in thermal environment. The mate-
rial properties of the FGM plate are assumed to be the functions of
both thickness position and temperature. The nonlinear governing
equation of the plate is formed in the total Lagrange approach
based on the von Karman assumptions. Due to value of force vec-
tor, this problem can be classified into two categories: geometrical
nonlinear and nonlinear eigenvalue analyses. Through various
numerical results, some concluding remarks can be drawn:

– There is a quite difference between linear and nonlinear solu-
tion. Under transverse load, nonlinear analysis achieves lower
deflection solutions because of additional nonlinear stiffness
matrix. In case of purely thermal load, due to thermal mem-
brane effect, the overall plate stiffness is reduced. As a result,
the nonlinear deflections are larger than linear ones.

– In the FGM plate, temperature rise causes presence of the
extension-bending effect due to its non-symmetric material
properties. Therefore, no bifurcation type of instability occurs.
However, in the special case, that is clamped boundary condi-
tion, the boundary constraint is capable to neutralize the extra
moment. Thus, the buckling bifurcation does exist.

– The thermal resistance of the FGM plates reduces according to
increase in the material gradient index n because of the stiffness
degradation by the higher metal inclusion.

– FGM plate reduces the thermal resistance as temperature-
dependent material properties are taken into account. This
reduction is more clearly observed in thick plates.
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