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Abstract

The paper introduces a novel model of parallel metaheuristic optimization algorithms. The hierarchical graph model of a parallel
optimization algorithm is proposed. It consists of the model for a parallel optimization algorithm at the top level of the hierarchy
and the model for a sequential optimization algorithm at the bottom level. The unified representation of a metaheuristic optimiza-
tion algorithm, which allows representing a class of metaheuristic algorithms, is used. The extension of the proposed model to
the parametric hierarchical model is proposed. Graph model transformations for a parallel algorithm analysis and synthesis are
introduced. The representation of several metaheuristic algorithms with the proposed model is discussed.
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1. Introduction

Metaheuristic optimization algorithms are a relatively new and fast developing area of algorithms which combine
heuristics for solving a broad class of optimization problems without a priori knowledge about a problem origin.
Metaheuristic algorithms are divided mainly into evolutionary algorithms and swarm intelligence algorithms[1].

During the extensive research in evolutionary and swarm intelligence computation a lot of hybrid algorithms were
proposed, which combine major features of existing optimization algorithms. A great variety of metaheuristic algo-
rithms on the one hand and their common features (stochastic behaviour, population structure) on the other hand
had led to the development of unified models. Such models were researched by De Jong [2], Back [3]. De Jong had
developed the unified approach to represent an evolutionary algorithm with basic unified elements such as common
evolutionary operators, methods for representing individuals (genotypical or phenotypical), methods for choosing
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population size, methods for fitness function evaluation. Several mathematical models for metaheuristic algorithm
had been analyzed: a population dynamics model, a Markov model for fitness function distribution.

Due to a high computational complexity, parallel optimization algorithms became widespread in the last years. The
most used models of parallel optimization algorithms [4, 5, 6] are global (known as a master-slave); coarse-grained
(island); fine-grained (cell) models. These models represent the parallelism by scheduling parallel tasks on so-called
computational agents.

The research in parallel task scheduling, parameter control, self-adaptive algorithms motivates the need for an
abstract model of a parallel metaheuristic optimization algorithm. Existing models clearly distinguish models of se-
quential algorithm and models of parallel algorithms so a parallel algorithm cannot be modelled uniformly. Modern
models of the parallel metaheuristic optimization algorithm are required to satisfy this requirement. In this paper, we
introduce the single hierarchical model, which combines a model of sequential metaheuristic algorithm of optimiza-
tion and a model of a parallel algorithm. To provide such a model we need to choose a parallel computation model to
be based on.

A parallel computation model presents an abstraction of a parallel system for the parallel algorithm. In this paper,
we choose the parallel computation model that well exposes essential properties of the island parallel model. This
choice is guided mainly by a level of explicit parallelism exposed in a model and an architecture of a parallel system.
The classification by the level of explicit parallelism in a parallel computation model was proposed by Skillicorn [7].
This classification introduced the following levels (by decreasing of model abstractness): explicit parallelism, ex-
plicit decomposition, explicit mapping, explicit communication, explicit synchronization. The island parallel model
corresponds to the level of explicit decomposition. Well-known models of this level are bulk synchronous parallel
(BSP) [8], LogP [9], etc. A BSP model is well suited for a modern class of manycore and massive-parallel systems
with non-uniform memory access.

The rest of the paper is organized as follows. In section 2 we propose the hierarchical model of the parallel algo-
rithm that efficiently composes a unified model of a sequential metaheuristic algorithm and an island parallel model
concerning a BSP parallel computation model. In section 3 we introduce the parametric hierarchical model. In sec-
tion 4 we apply a proposed model to the certain metaheuristic optimization algorithms — particle swarm optimiza-
tion [1], evolutionary strategy [10], evolutionary programming [11].

Some theorems stated as assertions to conserve space.

2. Hierarchical model of parallel metaheuristic optimization algorithms

2.1. Hierarchical model of algorithms

The synthesis of the proposed parallel optimization algorithm is based on the hybridization approach. Well-known
approaches are a hybridization with a global or island models on top-level and a diffuse model on bottom-level;
cooperation hybridization; coevolution hybridization [12]. We use a high-level (sequential and parallel algorithm are
clearly separated) embedding hybridization (by classification of Wang [13]). In this approach, the parallel algorithm
is based on the island parallel model [14, 15]. The embedded sequential algorithm is performed at the computational
agents on each iteration of the parallel algorithm.

Let As denote a sequential metaheuristic algorithm (subscript s hereafter means sequential) and A denote a parallel
metaheuristic algorithm.

As the mathematical model of the algorithm, we use a flow graph. The formal hierarchical model GA of the
metaheuristic algorithm A consists of two levels of hierarchy: top level — the graph model GAp of the parallel
algorithm A; bottom level — the graph model GAs of the sequential algorithm As.

For both levels of graph models, we introduce operation classes that represent an algorithm as an aggregate of
operation classes. For the bottom-level model, these operation classes correspond with basic unified elements from
the De Jong’s classification. They allow us to abstract the model from a specific metaheuristic algorithm. For the top-
level model, operation classes correspond with phases of the BSP computational model. We represent one iteration
of the parallel optimization algorithm as one superstep of the BSP model, which includes phases of computation,
communication and synchronization. The process of performing the sequential optimization algorithm on distinct
computational agents maps to the computation phase of BSP. One iteration in the top-level model consists of one
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season for an island PSO or a genetic algorithm. One iteration in the bottom-level model is a step of a metaheuristic
algorithm.

2.2. Graph model of metaheuristic optimization algorithms

We introduce an unweighted directed graph GAs = (VAs, EAs) of the sequential metaheuristic optimization algo-
rithm As, where VAs = V(GAs) is a set of vertices, which represent algorithm operations; EAs = E(GAs) is a set of
edges, which represent data dependency between operations. Denote a specific graph vertex S GAs as a start vertex. As
the graph vertex depicts an algorithmic operation, it is possible to unambiguously use a vertex designation instead of
an operation designation.

The algorithm As is an iterative algorithm. The graph GAs models an algorithm with an iteration data dependency,
therefore it contains a directed edge (v, S GAs ), v ∈ V(GAs) that represent inter-iteration data dependency. Define this
edge as the iteration edge eGAs .

Edges E(GAs) \ eGAs represent intra-iteration data dependencies (solid edges in Fig. 1(a)).

Definition 1. Let the graph G̃ be the out-iterative graph for a graph G, if

V(G̃) = V(G); eG ∈ E(G); E(G̃) = E(G) \ eG.

It should be noted that the graph G̃ may be cyclic as well as acyclic.
The set of all possible algorithms As forms the algorithms classMA. The graph GAs represents one iteration of an

algorithm, so the algorithm classMA is bound by one-step optimization methods.
Denote the set of operations of optimization algorithms from the class MA as E(MA). We introduce a parti-

tion Os(E(MA)) of a set E(MA) as a tuple of subsets, called operation classes:

Os = 〈S S , S A, S B, S E, S T 〉 , (1)

where

• S S — operation of the algorithm start;
• S A — operations of the iteration preparation;
• S B — operations of computations during one iteration;
• S E — operations of computation results aggregation from the iteration;
• S T — operation of the algorithm finalization.

Each operation class from the partition Os corresponds to one or many unified operations of metaheuristic algorithm
from the De Jong’s classification. Operation class S S consists of one operation represented by the vertex ss of the
graph GAs, which is a source of directed out-iterative graph G̃As. Class S T is represented by the sink vertex st of
graph G̃As. Class S B consists of several operations bi, i ∈ [0 . . m], which are mapped to graph vertices bi. Classes
S A, S E represent iteration preparation and iteration aggregation operations accordingly.

Assertion 1. Given any algorithm A ∈ MA, the graph structure and operation classes of an algorithm remains the
same for all algorithms inMA, but a number of vertices and edges, which correspond to operations, may vary.

2.3. N-iterative graph

Given the graph G = (V, E) has the iteration edge and the corresponding out-iterative graph G̃, denote the N-
iterative graph G(N) = (V (N), E(N)) be a graph composed from N subgraphs G̃ and N − 1 iteration edges which
connect those subgraphs. Iteration edges of the graph G(N) are bridges in this graph.
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Fig. 1. (a) Graph GAs of an example algorithm As. (b) Graph GAp of an example algorithm A.

Vertex set of this graph is defined as

V (N) =
{
v(1)

1 , v
(1)
2 , . . . , v

(1)
|V | , . . . , v

(N)
1 , v

(N)
2 , . . . , v

(N)
|V |

}
.

A vertex v(k)
i with a superscript k belongs to the subgraph G̃k that corresponds to the algorithm iteration k. Hereafter

an expression |X| describes a cardinality of a set X.
Edge set E(N) of the N-iterative graph is defined by the following rules.
Rule 1. If the graph G̃ has the edge (vi, v j) and this edge is not an intra-iteration edge, then include to the edge set

the subset

(
(v(1)

i , v
(1)
j ), . . . , (v(N)

i , v
(N)
j )
)

;

Rule 2. If the vertex vi belongs to an operation class S A and the vertex v j belongs to an operation class S E, then
include to the edge set the subset

(
(v(1)

j , v
(2)
i ), (v(2)

j , v
(3)
i ), . . . , (v(N−1)

j , v(N)
i )
)
.

Assertion 2. If the graph G̃ is acyclic, then N-iterative graph G(N) is acyclic too.

It should be noted that an out-iterative graph G̃ is the 1-iterative graph too.
An example of 2-iterative graph GA(2) is shown in Fig. 2.

2.4. Graph model of parallel algorithms

We introduce the model GAp of a parallel algorithm based on a combination of the island parallelism model and
the graph model GAs (see Section 2.2) of the sequential metaheuristic algorithm As.

Based on the analogue with an expression (1) we define operation classes in the parallel algorithm;

Op = 〈PS , PA, PD, PE, PR, PT 〉 , (2)

where
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Fig. 2. Example of 2-iterative graph GA(2).

• PS — operations of agents initialization;
• PA — operations of algorithm state distribution to agents;
• PD — operations of performing the sequential algorithm by agents;
• PE — operations of aggregation of computation results from agents;
• PR — operations of refreshing algorithm’s state;
• PT — operations of algorithm finalization.

A parallel graph model GAp for an example parallel algorithm A is shown in Fig. 1(b).
Operation classes PS , PT correspond to vertices ps, pt of the graph GAp accordingly. In the out-iterative graph

G̃Ap they are also sink and source vertices. The operation class PE includes a vertex pe.
As computational agents of the parallel algorithm perform a sequential optimization independently of each other,

so each vertex pdi, i ∈ [0 . . |PD|] of the graph GAp corresponds to subgraphs Di of the model GAs of the sequential
algorithm, which performed by a computational agent i.

Each path in the graph GAp from vertices pa ∈ PA to vertices pe ∈ PE represents a computational phase of a BSP
model performed by each computation agent. The path pa . . . pr represents one BSP superstep.

Definition 2. Given a parallel graph model GAp and a sequential graph model GAs, the graph expansion is a procedure
of replacing vertices pdi ∈ V(GAp) to the subgraphs Di ⊂ GAs.

In a general case subgraphs Di,Dj may correspond to different sequential algorithms.

Definition 3. The expanded graph is the graph GA+p , which is obtained by the expansion procedure from a graph GAp.
An original graph GAp we denote as the unexpanded graph.

An example of an expanded graph GA+p for an unexpanded graph GAp is shown in Fig. 3.
It should be noted that the graph expansion from G to G+ is not a vertex mapping, because during the graph ex-

pansion procedure a vertex set of the graph G+ is supplemented with a vertex set of each sequential graph model GAs.
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Formally the graph expansion procedure is described as follows:

V(G+) = V(G)
⋃
⋃

i

fV (V(GAs)i)) \
⋃

i

pdi

 , (3)

E(G+) = fE(E(G))
⋃
⋃

i

(pa; sai)


⋃
⋃

i

(sei; pe)

 \
(
(pa; pdi)

⋃
(pdi; pe)

)
, (4)

where i ∈ [0 . . |D|]; fV , fE are functions of renaming graph Di vertices to maintain vertex uniqueness in the graph G+.
An example of function fV can be a mapping given by as a set of pairs

fV (V) =
{
vi, v j

}
,

v j =


vki , if ∃k : vi ∈ Dk ,

vi otherwise.

Basing on the analogue with the graph GAs, the iteration edge fGAp defines a data dependency between the con-
secutive iterations of the parallel algorithm. Excluding the iteration edge from the graph extracts one iteration in this
graph. That iteration is represented by the out-iterative graph G̃Ap.

Assertion 3. Out-iterative graph model G̃Ap of a parallel algorithm is acyclic.

It should be noted that the Assertion 3 is inapplicable to the graph model GAs of a sequential algorithm.
The graph expansion of the algorithm model GAp, the out-iterative graph GA+p transforms them into the cyclic

graphs. From the perspective of a graph model classification, the out-iterative graph GA+p or the N-iterative graph is
an acyclic task dependency graph, while the original graph GAp is a flow graph.

Assertion 4. Any subgraph Di, i ∈ [0 . . |D|] of the graph GAp is an acyclic task dependency graph of the sequential
algorithm As.

In other words, we require from the graph model GAp that any subgraph Di of the graph model GAp must be the
graph model of the sequential algorithm A.

Thus the graph model of a parallel metaheuristic optimization algorithm A consists of two hierarchy levels:
• top-level model (the graph GAp, which represents an island parallel model);
• bottom-level model (subgraphs Di of the graph GAp, which represent a sequential algorithm As ∈ MA).

Graphs of those two hierarchy levels are correlated with a graph expansion procedure (3).
We should emphasize, that for different metaheuristic optimization algorithms the top-level graph model GAp

remain the same. Algorithms from the classMAmay differ with the control flow because they perform computations
differently. So those algorithms have different bottom-level graph models. Therefore given the abstract metaheuristic
optimization algorithm model GAs, we can express only those properties of the algorithm A in the model GAp that are
essential only for a top-level graph model.
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Fig. 3. An expanded graph GA+p of an example algorithm A

3. Parametric hierarchical model

A metaheuristic optimization algorithm usually has free control parameters (also called strategy parameters). Let
the BSP-based parallel algorithm have control parameters too, such as computational agents count, superstep duration
and so on. Therefore we propose the parametric hierarchical model of a metaheuristic optimization algorithm.

Let the parallel algorithm A has a vector P of control parameters consisting of continuous and discrete parameters.
A discrete parameter may describe structural characteristics of the algorithm (such as neighbourhood topology in a
PSO algorithm). The vector of parameters P is split to the vector Ps of parameters of the bottom-level model and the
vector Pp of parameters of the top-level model. We introduce the parametric metaheuristic algorithm As(Ps) which is
parametrized with a vector of parameters Ps. This vector should not be confused with a vector of parameters of the
metaheuristic algorithm As itself.

We add the vector P into the model GA(A) of an algorithm A. The vector P identifies a specific algorithm from
a class of algorithms. Let GA(A, P) be a parametric model of an algorithm A. Since the model GA is a hierarchical
model, we have

GA(A, P) = GA(A, Ps, Pp) .

Theorem 1. For any values of parameters P′s, unexpanded graphs GA(A, P′s, Pp) are isomorphic.

Proof. Changing the values of parameters Ps of the sequential algorithm changes the graph GAs(P′s) too. Since the
graph GA is an unexpanded graph, by the Assertion 4 subgraphs GAs are represented with vertices pdi. Edges, which
connects vertices pdi with other vertices, remain the same for any value of parameter P′s. Therefore, unexpanded
graphs GA(A, P′s, Pp) are isomorphic.

Also, we introduce a parametric algorithm model based on the expanded graph GA+:

GA+(A, P) = GA+(A, Ps, Pp) .
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The graph expansion procedure (3) allows us to use the model GA+(A, P) in place of the model GA(A, P) in a unam-
biguous way while the contrary is not true.

4. Hierarchical models of several metaheuristic optimization algorithms

4.1. Particle swarm optimization

Let the parametric graph model GA(APS O, Ps, Pp) describe the particle swarm optimization algorithm APS O. Here
the vector Ps of the sequential algorithm parameters consists of the following parameters:

• N — a number of particles in a population;
• alpha, beta, gamma — various free parameters of the algorithm;
• Neighb ∈ {Lbest,Gbest, Thor,Cluster}— a neighborhood topology.

The vector Pp of the parallel algorithm parameters consists of:

• NS — a number of sub-swarms (or islands);
• T — a migration season duration;
• Mig ∈ {Copy,Move}— a migration strategy.

Operation class S E from the partition GAs (1) for the PSO algorithm APS O ∈ MA includes an operation of
choosing the best particle in the swarm based on the state of one algorithm step. For the parallel graph partition (2)
an operation of class PE describes a particle migration strategy. An operation of class PR describes the migration
procedure, and an operation of class PE includes a swarm state update.

Various modifications of the PSO algorithm also belongs to the classMA. For example, several PSO algorithms
with different neighborhood topology (Jordan [16]) have those graph models where graphs of sequential algorithms
are subgraphs of the graph GAs. In gbest topology, a subgraph S Bi is a clique, while in the lbest topology it is a ring
graph.

4.2. Evolutionary strategy

Evolution strategy is based on an iterative change of the optimization vector with the mutation and recombination
operators. The proposed model has the mutation operator in the operation class S B; selection and recombination
operators in the operation class S E. Operation classes of the parallel model are equivalent to those in an island
model.

4.3. Evolutionary programming

The evolutionary programming algorithm differs from the evolutionary strategy by lacking a recombination oper-
ator. So the operation class S E includes a selection operator. The operation class S B includes a mutation operator.

5. Conclusion

In this paper, we proposed the hierarchical model of the parallel metaheuristic algorithm, which allows using
graph theory methods for analysis and synthesis of sequential and parallel optimization algorithms. Graph models
of algorithms are based on a flow graph model that is widely used for developing parallel programs. Procedures for
expanding hierarchical graph, building an out-iterative and N-iterative graph has been described. The usage of the
proposed parametric hierarchical model allows us to represent a whole class of metaheuristic algorithms with a single
parametric model as well as to produce a parallel algorithm with different computational agents count.

The further work includes a research in methods of mapping a parallel algorithm onto an architecture of a parallel
system based on the proposed hierarchical model. Annotating of sequential optimization programs to perform an
automatic synthesis of the parallel algorithm is also an interesting application.
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