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a b s t r a c t

Under general conditions for c-server loss systems, Bc , the fraction of customers lost, is decreasing and
convex.We study the shape of {Bc} for retrial queues.We show Bc+1 > Bc is possible. For arbitrary arrivals
and exponential service, we show {Bc} is decreasing, and report simulations where it is convex.
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1. Introduction

Let customer i arrive at time ti, 0 ≤ t1 ≤ t2 · · ·, at a c-server
system, where arriving customers who find all servers busy (called
blocked customers) leave without service. In a conventional loss
system, these customers never return and are lost. In a retrial queue,
some of them return later to try again to find an idle server (a
retrial). For the same customer, this may occur many times. At any
time t , customers who have been blocked at least once and will
return later are said to be in orbit. We assume that eventually,
with probability 1, all customers are either served or lost, in the
sense that they have not been served andwill never return. Assume
arrivals occur at finite rate λ > 0.
Of course, many real systems have a finite buffer (number of

queue positions), where arrivals finding all servers busy enter
the buffer (join the queue), provided it is not full. On each
service completion, a customer in the buffer (if there are any)
immediately leaves the buffer and begins service. Customers
finding all servers busy and a full buffer are blocked. We have
the same possibilities; either all blocked customers are lost (the
conventional assumption) or someof them return later to try again.
We will not consider buffered systems here.
Let loss probability Bc be the (long run) fraction of customers

lost, in the sense defined above, when the limit exists. Number
the servers 1, 2, . . ., and suppose that each customer’s service time
does not depend on the server. Without loss of generality, let each
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customer be assigned to the lowest-numbered server that is free,
either on arrival, or if necessary, at a subsequent retrial time.
For loss systems, we assign customers this way to compare Bc

as c ≥ 1 varies. Clearly, {Bc} is decreasing (non-increasing) in c
because customers served by server c + 1 are among those that
would be lost when there are only c servers. Bc − Bc+1 is the
reduction in the loss probability as we increase the number of
servers from c to c + 1. It has long been of great interest to know
conditions under which this quantity also decreases as c increases,
or equivalently, that {Bc} is convex. Customers served by server
c+1 account for reduction Bc−Bc+1, and consequently, convexity
is equivalent to this: In the long run, and for every c , server c serves
more (at least as many) customers as server c + 1.
In retrial queues, server c + 1 may serve customers who,

on subsequent retrials, would otherwise be served by an earlier
server. Unlike loss systems, adding server c + 1 may change the
fraction of customers served at earlier servers.
For loss systems, we now briefly review the literature on the

convexity of {Bc}. In 1972, Messerli [4] showed that {Bc} is strictly
convex for the M/G/c loss system. In 2002, Wolff and Wang [6]
showed that {Bc} is convex but not necessarily strictly convex
under conditions we call AI: Arbitrary arrivals and i.i.d. service
times, independent of the arrival process.
For loss systems, it is known that convexity may fail when

service times are dependent. We present a simple example
because we have not found one in the literature: Arrivals occur
at times 0, 2, 4; 10, 12, 14; . . ., with corresponding service times
5, 1, 1; 5, 1, 1; . . .. We have B1 = 2/3 and B2 = 0.
There is a separate literature on loss systemswith ordered entry,

where the order of the servers is fixed, arrivals are served at the
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lowest-numbered server that is free, and the service distribution
may depend on the server. When a customer enters service at server
c , the service time is a randomdraw from some service distribution
Gc , independent of all else.
For an ordered-entry loss system with renewal arrivals and

exponential service, where service rate µc at server c is decreasing
(non-increasing) in c , Yao [7] in 1986 showed that {Bc} is strictly
convex. Also see the proof on p. 135 of [3]. In an unpublished 1972
manuscript, Descloux [1] obtained the same result when theµc are
all the same (and hence whether or not we have ordered entry).
Based on themethod in [6], Papier et al. [5] showed in 2007 that

{Bc} is convexunder these assumptions: Arbitrary arrivals thatmay
have batches of customers of arbitrary batch sizes. Service times all
have the same distribution, are independent of the arrival process
and of each other from batch to batch, but may be dependent
within the same batch.
They assumed partial batch blocking (PBB):When a batch of size

b customers arrives to find i < b idle servers, i customers are
served, and b − i are lost. Under entire batch blocking (EBB), all b
customers are lost. They showed that under EBB, convexity may
fail, even under AI. PBB was implicitly assumed in [6].
They also greatly extended the convexity result in [7] to an

ordered-entry loss system with arbitrary arrivals and general
service distributions, where Gc is stochastically increasing (non-
decreasing) in c. (The exponential service distributions in [7] are
stochastically increasing.)
In real queueing systems, not all blocked customers are

lost (with or without a finite buffer). Consequently, there is a
large literature on retrial queues, spawned in part by Falin and
Templeton [2]. Most of this monograph and literature assume
that all blocked customers are (eventually) served, ignoring the
trade-off between reducing lost calls and increasing the number
of servers. In fact, we are not aware of any results about the shape
of {Bc} in this literature.
We investigate the shape of {Bc} for retrial queues. Under AI,

we show in Section 2 that when there are c servers, the fraction
of customers served at server u is a decreasing function of u =
1, . . . , c. Unlike loss systems, however, this is not equivalent to
convexity. By counterexample, we show that Bc+1 > Bc is possible.
We also show that convexity may fail under either (i) constant
service and inter-arrival times, or (ii) constant service times and
sharply restricted retrial behavior.
In Section 3, we show that {Bc} is decreasing for arbitrary

arrivals, exponential service, and the usual model of orbiting
customers in the literature.
In Section 4, we report simulation results, described there,

where {Bc} is decreasing and convex. We briefly discuss retrial
queues with either batch arrivals or ordered entry in Section 5, and
present concluding remarks in Section 6.
In the remainder of this Section, we briefly describe themethod

introduced in [6] to prove convexity for loss systems because we
later adapt it to obtain a result for retrial queues:
For an ordered sequence of servers, arrivals blocked at server 1

overflow it, forming an overflow process, which is the arrival process
at server 2, and so on. Each successive server c thins (removes
some of the points) from the original arrival process. They compare
servers c and c + 1, where both are idle initially.
The arrival process at c and the corresponding service times

generate the thinned arrival process at c + 1 and the following
quantities: Xn and Yn, the respective times of the nth service
completion at servers c and c + 1, n ≥ 1, and J(t) and K(t), the
respective number of service completions by time t at servers c and
c+1, t ≥ 0. They enlarge the sample space generated by the arrival
and service times by introducing an i.i.d. sequence of random
variables (distributed as service times), S1, S2, . . ., independent of
all else.

For an arbitrary sample path of arrivals and service times at
server c , they generate the thinned arrival process at server c + 1
and the quantities above. For the same arrival process at server
c and the thinned arrival process at server c + 1, they replace
the service time of the nth customer served at server c and at
server c + 1 (different random variables) by the same random
variable Sn, for every n ≥ 1. The arrival process at each server and
{Sn} generate theprimed stochastic processes {X ′n}, {Y

′
n}, {J

′(t)}, and
{K ′(t)} corresponding to the unprimed processes above.
They showed: Each primed stochastic process is stochastically

equivalent to the corresponding unprimed process, and at every
point in the sample space,

X ′n ≤ Y
′

n, n ≥ 1, and J ′(t) ≥ K ′(t), t ≥ 0.

The result follows. The construction of the primed processes is an
example ofwhat is called coupling. This argument, which combines
coupling and thinning, we call CT. The extensions in [5] were
obtained by modifying this argument.

2. Loss probabilities in retrial queues

For retrial queues, we now investigate the shape of {Bc} for
a general retrial model. While Eq. (1) is promising, it turns out
that without some restrictions on retrial behavior, {Bc}may not be
convex, and in fact may also fail to be monotone decreasing.
Suppose the virtual arrival process at server 1 consists of the

(initial) arrival times ti and retrial times. Customer i has a finite
(possibly zero) number of ordered virtual retrial times ti + δij,
where 0 < δi1 < · · · < δiki < δi,ki+1 = ∞. Thus, ki is the
maximum number of retrials that customer i will attempt before
leaving forever. A retrial by customer i will occur at time ti + δij,
j ≥ 1, if and only if earlier attempts to find a free server failed.
Let Vi = {δi1, . . . , δiki} be the collection of virtual retrial time
increments of customer i.
We call this arrival process virtual because not all retrial times

actually occur. When a customer is served at some station, not
only is the corresponding arrival (or retrial) time removed from
arrival processes at downstream stations, subsequent retrial times
of that customer also are removed from the arrival process at
each station, including station 1. Thus, upstream arrival processes
also are thinned. To remove ambiguity about which arrivals are
removed, we assume that with probability one, initial and virtual
arrival (retrial) times are distinct. Every customer, on each attempt,
is served by the lowest-numbered server that is free. Number
customers in order of their initial arrival times.
When there are c servers, let fuc be the fraction of customers

served by server u, u = 1, . . . , c , where we assume these
quantities exist. We assume that with probability 1, all customers
are (eventually) lost or served. Under these assumptions, the
fraction of customers lost (when there are c servers) iswell defined
as Bc = 1− (f1c + · · · + fcc), where B0 = 1.
We assume AI: Arbitrary initial and virtual arrivals, and

i.i.d. service times, independent of the initial and virtual arrivals.
Fix the number of servers c . An arbitrary sample path of initial

and virtual arrivals at server 1 and the corresponding service
times generate the thinned (actual) arrival process and service-
completion times at each station. For any u < c , the arrival process
at station u + 1 is a thinning of the arrival process at station u.
Applying the CT argument to stations u and u + 1, we have fuc ≥
fu+1,c , and

f1c ≥ · · · ≥ fcc . (1)

For loss systems, where fuc is fixed for all c ≥ u, (1) is equivalent
to convexity.
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Now let

rc =
c−1∑
u=1

fu,c−1 −
c−1∑
u=1

fuc

be the reduction in the fraction of customers served by servers
1, . . . , c−1when the number of servers is increased from c−1 to
c , where r1 = 0. (Note thatwe have not shown there is a reduction,
i.e., that rc ≥ 0.) With this notation,
Bc−1 − Bc = fcc − rc .
We know f12 ≥ f22. If we also have r2 ≥ 0, it easily follows that

B1 − B2 ≤ B0 − B1.
However, having rc ≥ 0 for all c is not sufficient for convexity.

Even more can go wrong, as the following counterexamples show.

Counterexample 1. Service times are constant, S = 1. Customers
occur in groups of 5: Initial arrival times are 0, 0.1, 1.3, 1.4, 2.2; 10,
10.1, 11.3, 11.4, 12.2; . . .. In each group, the middle three cus-
tomers return at most once; the others do not return at all.
Customers 2, 3, 4; 7, 8, 9; . . . have respective virtual retrial times
1.1, 3.3, 4.4; 11.1, 13.3, 14.4; . . .. (Note: A group is not a batch.)
For c = 1, it is easy to see that every customer is served, in the

order 1, 2, 5, 3, 4; 6, 7, 10, 8, 9; . . .. Hence, B1 = 0.
For c = 2, server 1 serves customers 1, 3; 6, 8; . . ., and server

2 serves customers 2, 4; 7, 9; . . .. Customers 5; 10; . . . are lost. We
have B2 = 0.2 > B1.

Adding a server increased the loss probability! Recall that for
loss systems, the monotonicity of {Bc} holds without making any
stochastic assumptions. For retrial queues, we have shown that
monotonicity may fail under AI.
Initial arrival and retrial patterns are ‘‘unusual’’ above. We now

show that evenwith constant initial inter-arrival and service times,
convexity may fail.

Counterexample 2. Initial inter-arrival times are constant T =
1, and service times are constant S = 2.4, where customer
i has initial arrival time ti = i − 1, i ≥ 1. Customers
2, 7; 12, 17; . . . return at most once, with respective virtual retrial
times 2.5, 7.5; 12.5, 17.5; . . .. The others do not return at all.
For c = 1, server 1 serves customers 1, 2; 6, 7; . . .. B1 = 3/5.
For c = 2, a pattern repeats every 15 customers. Server 1 serves

customers 1, 4, 7, 10, and 13. Server 2 serves customers 2, 5, 8, 11,
and 12. Customers 3, 6, 9, 14, and 15 are lost. B2 = 1/3.
For c = 3, all customers are served; B3 = 0. Thus, {Bc}

decreases, but B0−B1 = 6/15, B1−B2 = 4/15, and B2−B3 = 5/15.
Convexity fails!

In the next case, only the initial arrivals have an irregular
pattern.

Counterexample 3. Service times are constant S = 4. Customers
occur in groups of 5: Initial arrival times are 0, 0.4, 2.8, 3.2, 3.6; 10,
10.4, 12.8, 13.2, 13.6; . . .. All customers have the same retrial be-
havior. They return at most once, with constant virtual retrial time
increments δi1 = 8.
For c = 1, server 1 serves customers 1, 2; 8, 6; 13, 11; 18, 16;

. . ., in the indicated order. Because of initial conditions, the pattern
does not emerge until the second group. We have B1 = 1− 2/5 =
3/5.
For c = 2, server 1 serves customers 1, 6, 11, . . ., and server

2 serves customers 2, 7, 12, . . .. Note that no returning customer
is served. As each server serves 1/5 of the customers, we have
B2 = 3/5. Convexity fails again!

From the first two counterexamples, it appears that some
restriction on retrial behavior is necessary in order to obtain
convexity or even monotonicity. For example, suppose that the Vi
are i.i.d. Wemodel a version of this assumption in the next section.
The third counterexample shows that restricting retrial behavior
alone is not sufficient.We comment further about this in Section 6.

3. Monotonicity under restricted retrial model

Now restrict AI to Restricted AI: Arbitrary initial arrivals,
i.i.d. Vi, independent of the initial arrivals, and i.i.d. service times,
independent of all else.
In addition, we further restrict retrial behavior to the Orbit

Model: Each customer’s virtual times between successive attempts
to find an idle server, given they occur, are i.i.d., with exponential
distribution at rate γ . Independent of this, the probability of
returning again after j failed attempts is α for every j ≥ 2, and
α1 for j = 1. These assumptions are universal in the retrial-queue
literature, usually with α1 = α = 1, or α1 < 1 and α = 1. We
assume α1 > 0 and 0 ≤ α < 1. At time t = 0, all servers are idle
and no customers are in orbit.
With this formulation, it is not necessary to keep track of virtual

retrial times explicitly. Instead, when there are c servers, let Oc(t)
be the number of customers in orbit at time t . Measured from
t , the time until the next retrial is exponential at rate Oc(t)γ .
A customer with initial arrival at t enters service if a server
is idle; if all servers are busy, the customer enters orbit with
probability α1, increasing Oc(t) by 1, and with probability 1 − α1,
the customer is lost forever, leaving Oc(t) unchanged. A customer
with a retrial at t enters service if a server is idle, decreasing
Oc(t) by 1; if all servers are busy, the customer reenters orbit with
probability α, leaving Oc(t) unchanged, andwith probability 1−α,
the customer is lost forever, decreasing Oc(t) by 1. Notice that
the service times of orbiting customers are no longer associated
with particular arrivals; instead, they are random draws from the
service distribution each time a customer enters service fromorbit.
We call {Oc(t)} an orbit process.
For this queue, let Mc(t) be the number of busy servers at

time t and Dc(t) be the number of service completions by time t .
Initially,Mc(0) = Oc(0) = 0. We will prove that {Bc} is monotone
decreasing by comparing the service-completion processes for
retrial queues with c and c + 1 servers. To simplify the analysis,
we assume exponential service times at rate µ.
We couple these queues as closely as possible. For example,

when one has r busy servers and the other has s ≥ r , we generate
service completions at rate sµ for the busier queue. A generated
service completion is also a service completion at the other queue
with probability r/s. The orbit processes are coupled in the same
manner. For both queues, the same arrival (coupled retrial) finding
all servers busy has identical behavior. Let A(t) = Dc+1(t)−Dc(t),
N(t) = Mc+1(t)−Mc(t), and P(t) = Oc(t)− Oc+1(t).
Monotonicity is an easy consequence of the following result:

Theorem 1. For the coupled retrial queues with arbitrary arrivals
and the stochastic assumptions in this section, these sample-path
inequalities hold:

(i) P(t) ≥ 0,
(ii) − c ≤ N(t) ≤ 1,
(iii) A(t)+ N(t) ≥ P(t), and
(iv) A(t) ≥ 0, for all t ≥ 0.

Proof. Proof is by induction. Because both queues and orbit
processes start empty, A(0) = N(0) = P(0) = 0, and (i) through
(iv) hold at t = 0. Along the sample path, {A(t)}, {N(t)}, and {P(t)}
are constant between jumps at times where one of three types of
events occur: an external arrival, a retrial, and a service completion.
Suppose an event occurs at time t , where these conditions hold at
t−. We will show that the conditions still hold at t (after the jump)
by considering in turn each type of event. As this will occur several
times, note that N(t) = 1 means that both queues have the same
number of idle servers.
Suppose an external arrival occurs. If N(t−) = 1, N(t) and

P(t) are the same as N(t−) and P(t−), respectively. If N(t−) ≤ 0
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with Mc(t−) < c , then N(t) and P(t) remain the same; if instead
Mc(t−) = c , thenN(t) = N(t−)+1 and P(t−) ≤ P(t) ≤ P(t−)+1
(the arrival may be lost). It is easy to check that under any of these
changes, all of the conditions still hold at t .
Suppose a retrial occurs. Since P(t−) ≥ 0, a retrial comes either

from both orbits or only from the c-server orbit (if P(t−) > 0).
When from both, the situation is the same as that of an external
arrival. When from one, with Mc(t−) = c , N(t) = N(t−) and
P(t−) − 1 ≤ P(t) ≤ P(t−). If Mc(t−) < c (note that Mc(t−) < c
implies N(t−) > −c), we have N(t) = N(t−) − 1 ≥ −c and
P(t) = P(t−)− 1 ≥ 0, and all of the conditions still hold at t .
Finally, suppose a service completion occurs. If it occurs at both

queues,N(t) and A(t) do not change. If it occurs only at the (c+1)-
server queue (only if N(t−) = 1), then N(t) = N(t−) − 1 and
A(t) = A(t−)+ 1, and all of the conditions hold. If it is from the c-
server queue (only ifN(t−) < 0,which, in turns, implies A(t−) > 0
by (iii)), then N(t) = N(t−) + 1 and A(t) = A(t−) − 1 ≥ 0, and,
again, all the conditions hold. �

A(t) ≥ 0 is the number of additional service completions at the
(c + 1)-server queue by t . When the limits exist, where the Bc do
not depend on the coupling,

λ(Bc − Bc+1) = lim
t→∞

A(t)/t ≥ 0, c ≥ 1, which is

Theorem 2. For retrial queues with arbitrary arrivals and the
stochastic assumptions in this section, {Bc} is monotone decreasing.

When there are no losses (α1 = α = 1), inequalities (i)–(iv)
still hold, where (iii) becomes A(t)+ N(t) = P(t) for all t . Service
completions occur sooner for the (c + 1)-server queue, but when
both systems are stable, Bc = Bc−1 = 0, and A(t)/t → 0 as
t →∞.

4. Simulation results

Retrial queues were simulated under renewal initial arrivals,
i.i.d. service times, and the Orbit Model, for combinations of
exponential, constant, and hyper-exponential inter-arrival and
service distributions. In every case, {Bc} is convex as well as
monotone. For further discussion, see Section 6.

5. Batch arrivals or ordered entry

For retrial queues with batch arrivals, customers from the same
batch may be served by the same server. Under the model in [5],
CT does not apply; it requires that the service times of served
customers at each server be i.i.d.
Now suppose we have ordered entry with c servers, where Gu

is the service distribution at server u, and the Gu are stochastically
increasing. Following [5], we enlarge the sample space by
introducing an i.i.d. sequence of random variables U1,U2, · · · that
are uniformly distributed on (0, 1), independent of all else. To
construct the corresponding primed processes, Sun , the service time
of the nth customer served at server u, is generated by Sun =
G−1u (Un).
From the stochastic ordering, Sun ≤ S

u+1
n for every n at every

sample point, the modified CT argument goes through, and we
again have (1).

6. Concluding remarks

For loss systems, {Bc} is decreasing and convex under AI
(arbitrary arrivals, i.i.d. service times), very general conditions
that are likely to hold in practice. Having arbitrary arrivals allows
some customers to arrive in batches and includes renewal arrivals
as a special case. A key property in the proof of this result is
the downstream thinning of the arrival processes at successive
stations.
When the research reported here began, the shape of {Bc}

for loss systems was well understood, but was a blank slate for
retrial queues. All results we report for retrial queues are new; we
comment on some of them below.
The upstream thinning of the arrival process greatly compli-

cates the analysis, and more can go wrong. In the first counterex-
ample, which satisfies AI, B2 > B1. For loss systems, this is impos-
sible!
To obtain ‘‘positive’’ theoretical results, we restrict AI through

retrial behavior. Restricted AI has arbitrary initial arrivals,
i.i.d. retrial behavior from customer to customer, and i.i.d. service
times. Note that in the third counterexample, which satisfies
Restricted AI, {Bc} is decreasing but not convex.
In Section 3, we further restrict retrial behavior to the Orbit

Model, as described there, and show, under the additional
assumption of exponential service, that {Bc} is decreasing. While
this result holds only for a special case of Restricted AI, it is
important to note that the initial arrivals are arbitrary.
We also investigated the shape of {Bc} through simulation,

where it is decreasing and convex. Does this hold for arbitrary
service distributions (an important question) and/or for arbitrary
inter-arrival distributions (a less important question)? Less
important because we doubt that the renewal restriction will be
helpful in any proof and also because of shortcomings mentioned
below.
Our simulation runs are limited in two ways, by the Orbit

Model, which may smooth out retrial behavior too much, and
by renewal initial arrivals. While a popular assumption in
queueing theory, (non-Poisson) renewal arrivals is rarely a good
approximation of an arrival process in practice. Arrivals are often
said to be ‘‘bursty’’, with various meanings given to this term.
The third counterexample, where initial arrivals cluster in groups
of five, with gaps in between, should serve as a warning that
convexity may sometimes fail in practice.
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