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Abstract

In addition to mutations or aberrant expression in the
protein-coding genes, mutations and misregulation of noncod-
ing RNAs, in particular long noncoding RNAs (lncRNA), appear
to play major roles in cancer. Genome-wide association studies
of tumor samples have identified a large number of lncRNAs
associated with various types of cancer. Alterations in lncRNA
expression and their mutations promote tumorigenesis and
metastasis. LncRNAs may exhibit tumor-suppressive and -pro-

moting (oncogenic) functions. Because of their genome-wide
expression patterns in a variety of tissues and their tissue-
specific expression characteristics, lncRNAs hold strong prom-
ise as novel biomarkers and therapeutic targets for cancer. In
this article, we have reviewed the emerging functions and
association of lncRNAs in different types of cancer and dis-
cussed their potential implications in cancer diagnosis and
therapy. Cancer Res; 77(15); 1–17. �2017 AACR.

Introduction
Cancer is a complex disease associated with a variety of genetic

mutations, epigenetic alterations, chromosomal translocations,
deletions, and amplification (1). Noncoding RNAs (ncRNA) are
an emerging class of transcripts that are coded by the genome but
are mostly not translated into proteins (2). Although not trans-
lated, ncRNAs are crucial players in a variety of cellular and
physiologic functions (3). In particular, long noncoding RNAs
(ncRNAs that are >200 nt long) play key roles in regulating
chromatin dynamics, gene expression, growth, differentiation,
and development (4). It is now well recognized that more than
75% of the human genome is functional and encodes large
numbers of ncRNAs (5). On the basis of the ENCODE project,
it is estimated that the human genome encodesmore than 28,000
distinct long noncoding RNAs (lncRNA), many of which are still
being discovered and are yet to be annotated (6). While under-
standing the functions of so many lncRNAs and their detailed
characterization are challenging tasks, analysis of transcriptome
profiles using next-generation sequencing in the last few years has
revealed that thousands of lncRNAs are aberrantly expressed or
mutated in various cancers (7).

Although lncRNAs are emerging as a major class of noncoding
transcripts, the discovery of tremendously large numbers of
lncRNAs and their diverse functions and complexity pose a major
challenge to effectively classify them in different categories. At this
point, lncRNAs are broadly classifiedon the basis of their genomic
localization, modes of action, and function. Intronic lncRNAs
originate from the introns of protein-coding genes; intergenic

lncRNAs (lincRNA) originate from the region between two pro-
tein-coding genes; enhancer lncRNAs (elncRNA) originate from
the promoter enhancer regions; bidirectional lncRNAs are local-
ized within the vicinity of a coding transcript of the opposite
strand; sense-overlapping lncRNAs overlap with one or more
introns and exons of different protein-coding genes in the sense
strand of the DNA; antisense transcripts originate from the anti-
sense strands of the DNA, and they may or may not be comple-
mentary to protein coding sequences in the sense-strand (7, 8).
Functionally, lncRNAs are classified as signaling, decoy, guide,
and scaffold lncRNAs (9). Signaling lncRNAs are associated with
specific signaling pathways and their expression indicates an
active signaling event, irrespective of their roles (direct/indirect)
in the signaling process (9). For example, the expression of XIST
signals X-inactivation in females (10). Decoy lncRNAs act like
molecular sinks for transcription factors and repressors. They
interact with and titrate away transcription factors from binding
to the target gene promoters facilitating gene activation or silenc-
ing (9). Examples of decoy lncRNAs include GAS5 (growth
arrest specific 5), TERRA (telomeric repeat-containing RNA), and
others. (9). Guide lncRNAs bind to the regulatory or enzymati-
cally active protein complexes and direct them to specific target
gene promoters or genomic loci regulating downstream signaling
events and gene expressions. Examples of guide lncRNAs include
AIR, CCND1 (cyclin D promoter associated lncRNA), lincRNA-
p21, and others (8, 9). Scaffold lncRNAs act as a central platform
to which various protein complexes tether and get directed to
specific genomic location or target gene promoter–regulating
gene expression and chromosomal dynamics. Examples of scaf-
fold lncRNAs are HOTAIR, TERC, and others.

Beyond traditional ncRNAs, circular RNAs (circRNA) are also
emerging as a novel class of endogenous noncoding RNAs that
form covalently closed continuous loops instead of traditional
linear forms. CircRNAs are conserved across species and are found
to be associated with a variety of important biological processes
and human diseases including cancer. CircRNAs appear to func-
tion as miRNA sponges and are involved in the regulation of
mRNA splicing, transcription, and gene expression (11, 12).
Generally, circRNAs are classified as exonic, intronic, and
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retained-intronic circRNAs. They may be derived from exons,
introns, untranslated regions, antisense transcripts, and intergenic
regions. CircRNA biogenesis has been explained by various mod-
els, incorporating a range of spliceosomes and RNA-binding
proteins. The most accepted model suggests that circRNA bio-
genesis involves joining of a 50 splice site and a 30 splice site as the
result of back splicing (13, 14). Because of their unique structure,
circRNAs are resistant to nucleases and are stable with a relatively
long half-life. They may exist in tissues, serum, and urine, indi-
cating their potential as novel biomarkers for human cancer.
CircRNAs are implicated in a variety of cancers including laryngeal
cancer, gastric cancer, hepatocellular cancer, bladder cancer, and
esophageal cancer, among others (11, 15, 16). For example,
circRNA ciRS-7, which acts as a sponge for miR-7, is involved in
promoting colorectal cancer through inhibiting the repression of
oncogenes such as YY1 by tumor suppressormiR-7 (15). CiRS-7 is
an endogenous circRNA highly expressed in the brain and tran-
scribed antisense to the CDR1 (cerebellum degeneration-related
antigen 1) gene (12). CircRNAs such as circ-ITCH, hsa_-
circ_002059, and hsa_circ_0001649 are downregulated in colo-
rectal cancer, gastric cancer, and hepatocellular cancer, whereas
circ-VCAN, circTCF25, and circ-KLDGC10 are upregulated in
glioma, bladder cancer, and hepatocellular cancer (11, 12,
16–18). CircRNAs such as ci-ankrd52 and circular -ANRIL are
examples of circular lncRNAs (19, 20). Similar to lncRNAs, many
circRNAs display aberrant expression in various cancers and
possess strong promise toward development of novel biomarkers
and therapeutics.

Thus, in addition to protein-coding genes, ncRNAs, in partic-
ular lncRNAs, are rapidly emerging as a novel class of transcripts
associated with a variety of cellular and biological processes
including gene regulation and chromatin dynamics. They are
abundantly expressed and widely associated with a variety of
cancers, and the aberrant expression and mutations are closely
linked to tumorigenesis, metastasis, and tumor stage (21–23).
Moreover, they are specifically expressed in certain types of cancer
and detected in circulating blood and/or urine (24–26). LncRNAs
are a novel class of potential biomarkers and therapeutic targets
for the treatment of cancer. In this article, we have reviewed the
functions of various lncRNAs in different types of cancer and
discussed their potential implications in diagnosis and therapy
(Fig. 1).

LncRNAs in Prostate Cancer
Prostate cancer is the most common cancer and the second

leading cause of cancer-related deaths in American men. The
American Cancer Society estimates about 181,000 new cases of
prostate cancer and 26,000 deaths from prostate cancer in the
United States in 2016. There is an urgent need to develop novel
diagnostic biomarkers and effective therapies for prostate cancer.
Genome-wide RNA-Seq analyses identified many lncRNAs that
are up- or downregulated in prostate cancer (27). Several
lncRNAs, such as PCA3, PCGEM1, and PCAT-1, are highly specific
to prostate cancer (Fig. 1; Table 1; ref. 28).

PCA3
PCA3 (prostate cancer antigen 3; a.k.a., DD3), a steroid recep-

tor–regulated lncRNA transcribed from 9q21.22, is overexpressed
in 95% of prostate cancer cases and is detected with high spec-
ificity in the urine of patients with malignant and benign prostate

cancer (29–31; Fig. 1; Tables 1 and 2). PCA3 and Hedgehog
receptor PTCH (also implicated in prostate cancer) are highly
upregulated in the circulating prostate cancer cells of androgen
refractory patients (32–34). Prune2 (a tumor suppressor and a
target of PCA3) and PCA3 expressions are inversely correlated in
prostate cancer (34). PCA3 binds to PRUNE2-pre-mRNA to form
a double-stranded RNAduplex that recruits adenosine deaminase
(ADA), inducing RNA editing through acting on RNA (ADAR)
proteins (34).

PCGEM1
PCGEM1 (prostate cancer gene expressionmarker 1) is a 1.6-kb

long lncRNA from the 2q32 locus. It is a highly prostate tissue-
specific and androgen-regulated lncRNA that is overexpressed in
prostate cancer and promotes cell proliferation and colony for-
mation (Fig. 1; Table 1; refs. 35–37). PCGEM1 expression inhibits
doxorubicin-induced apoptosis and promotes chemoresistance
via inhibition of PARP cleavage and delaying the induction of
tumor suppressors p53 and p21 (36). Another lncRNA PRNCR1
(prostate cancer noncoding RNA1), in conjunction with
PCGEM1, regulates gene expression by promoting epigenetic
modifications (36). PRNCR1 binds to acetylated androgen recep-
tor (AR) at the enhancer, and recruits histone H3K79 methyl-
transferase DOT1L (disruptor of telomeric silencing 1-like),
which methylates AR that aids in the recruitment of PCGEM1 to
the AR N-terminal and modulates target gene expression (35).
Similarly, PCGEM1 recruits the Pygopus family PHD finger 2
(PYGO2) to the enhancer-promoter regions of AR gene and
regulates AR-induced gene expression (38).

PCAT-1
PCAT-1 (prostate cancer-associated ncRNA transcript 1) is a

7.8-kb long intergenic lncRNA (originating from 8q24 locus) that
is overexpressed in and highly specific to high-grade localized and
metastatic prostate cancer (Fig. 1; Tables 1 and 2; refs. 28, 38, 39).
It is independent of chromosome 8q24 amplification that is often
observed in other cancers. There is a converse correlation between
the expression of PCAT-1 and EZH2 [a histone H3K27-specific
methyltransferase and interacting component of polycomb
repressive complex 2 (PRC2); ref. 27]. EZH2 (enhancer of zeste
homolog 2) knockdown upregulates PCAT-1 (27). PRC2 binds
the PCAT-1 promoter and suppresses PCAT-1 expression (27).
PCAT-1 induces cell proliferation and downregulates the expres-
sion of genes including tumor suppressor gene BRCA2. PCAT-1
sensitizes prostate cancer cells toward PARP1 inhibitors. PCAT-1
posttranscriptionally upregulates c-Myc that promotes prostate
cancer cell proliferation (28, 38).

Various other lncRNAs including MALAT1, GAS5, PCAT6,
PCAT-18, lincRNA-p21, PRNCR1, TRPM2, CTBP1-AS, ANRIL,
PVT1,andSCHLAP1arealso linked toprostatecancer (Fig.1;Table
1; refs. 28, 38). PCAT-18 is a highly prostate-specific transcript
upregulated in prostate cancer and regulated by AR (28). CTBP1-
AS is an androgen-responsive lncRNA and an antisense transcript
of the CTBP1 gene (40). Overexpression of CTBP1-AS inhibits the
expression of cell-cycle regulators such as p53 and Smad3 in
prostate cancer cells, resulting in cell proliferation (41, 42).

Breast Cancer
Breast cancer is the most common and the second

deadliest cancer among women. It is estimated that
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246,660 new cases and 40,450 deaths occurred from breast
cancer in the United States in 2016. LncRNAs implicated in
breast cancer include HOTAIR, ANRIL, ZFAS1, HOTAIRM1,

NEAT1, DANCR,HIF1A-AS,XIST, TOPORS-AS1, LSINCT-5, PVT1,
MALAT1, and LNP1, among others (Fig. 1; Tables 1 and 2; refs. 43,
44).

Brain tumor

H19, CRNDE, ADAMTS9-AS2,
DISC2, MALAT1, POU3F3,
MEG3, CASC2, TSLC1-AS1

Leukemia

CRNDE, HOTAIRM1, DLEU1,
DLEU2, LUNAR1, BGL3,

CCDC26, XIST, NEAT1, UCA1

Breast cancer

HOTAIR, ANRIL, DANCR, NEAT1,
HIF1A-AS, ZFAS1, XIST, HOTAIRM1,

TOPORS-AS1, LSINCT-5

Gastric cancer

UCA1, H19, GHET1, CCAT1,
LINC00152, LSINCT-5, PTENP1,

TUG1, HOTAIR, PVT1, GAS5,
AA174084, GACAT2, FER1L4

Ovarian cancer

H19, LSINCT-5, XIST, HOST2,
NEAT1, HOTAIR, PVT1,

CDKN2BAS, CCAT2, BC200

Bladder cancer

UCA1, UCA1a, HOXD-AS1, TUG1,
ncRAN, H19, MALAT1, GHET1,

lincRNA-p21, MEG3, SPRY4-IT1,
linc-UBC1

Prostate cancer

PCAT1, PCAT6, PCAT18, PCA3,
PCGEM1, MALAT1, PVT1,
LincRNA-p21, PRNCR1,

CTBP1-AS, TRPM2, SCHLAP1

Lung cancer

MALAT1, NEAT1, SPRY4-IT1,
ANRIL, HNF1A-AS, UCA1, HOTAIR,

GAS5, MEG3, CCAT1, MVIH,
BANCR, PANDAR, EVADR, PVT1,

H19, SOX2-OT

Renal cancer

PVT1, LET, PANDAR, PTENP1,
HOTAIR, NBAT1, LINC00963,

MALAT1, SPRY4-IT1, KCNQ1OT1,
GAS5, RCCRT1, HIF1A-AS

Colorectal cancer

CCAT1, CCAT2, CCAT1-L, CRNDE,
E2F4, HOTAIR, HULC, MALAT1,

H19, FER1L4, PTENP1,
KCNQ1OT1, T-UCRs, UCA1

Pancreatic cancer

H19, HOTAIR, HOTTIP, MALAT1,
GAS5, HULC, PVT1, LincRNA-RoR,
AF339813, ENST00000480739,

AFAP1-AS

Liver cancer

HULC, Linc00152, HEIH, HOTTIP,
HOTAIR, MALAT1, DILC, ZFAS1,
MEG3, PRAL, LALR1, LET, MVIH,
PCNA-AS1, TUC338, UC001NCR

© 2017 American Association for Cancer Research

Figure 1.

LncRNAs associated with various types of cancer.
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Table 1. LncRNAs: their mechanism of action and significance in cancer

LncRNA Cancer type Mechanism of action and function References

PCA3 (a.k.a. DD3) Prostate Steroid receptor-regulated lncRNA; induces RNA editing via
interactionwith PRUNE2-pre-mRNA to formadouble-stranded
RNA duplex and ADAR proteins; knockdown results in reduced
cell growth and survival and induction of apoptotic cells; (")

29, 31, 33, 34, 258

PCGEM1 Prostate Promotes colony formation, cell proliferation; promotes
chemoresistance via inhibition of PARP cleavage and delaying
the induction of tumor suppressors p53 and p21; regulates AR
target genes expression, in conjunction with lncRNA PRNCR1,
AR, histonemethylase DOT1L; and Pygopus family PHD finger 2
(PYGO2); knockdown results in reduced proliferation and
increased apoptosis; (")

35–37

PCAT-1 Prostate Promotes cell proliferation, downregulates genes and tumor
suppressor genes; sensitizes prostate cancer cells towards
PARP1 inhibitors; posttranscriptionally upregulates c-Myc; (")

27, 39

HOTAIR Breast, hepatocellular, colorectal,
pancreatic, lung, ovarian

Scaffolding lncRNA, silences genes via interaction with PRC2 and
LSD1, aids in protein degradation via interaction with E3
ubiquitin ligases; knockdown reduces tumor invasiveness,
disrupts of EMT; (")

45–53, 57, 58, 262

ANRIL Breast, gastric, lung, liver Controls cell proliferation and senescence via regulating tumor
suppressors CDKN2A/B; represses the INK4A locus via
interaction with CBX7 and PRC2; knockdown lowers multidrug
resistance, reduces proliferation, and invasiveness; (")

66–78

MALAT1
(a.k.a. NEAT2)

Lung, prostate, breast, colorectal, liver,
gastric, leukemia, brain, renal

Undergoes processing to produce a short and long RNA
transcript; localized into nuclear speckles; influences SR-
protein phosphorylation and modulates alternative splicing;
regulates of EMT gene expression; associates with SUZ12 and
regulates N-cadherin and E-cadherin expression; knockdown
reduces cell growth, invasion, and migration, and
differentiation into cystic tumors; (")

83–90

NEAT1 Leukemia, ovarian Regulates ADARB2 expression via protein sequestration into
paraspeckles; knockdown results in inhibition of cell growth; (")

95, 96

H19 Bladder, brain, gastric, renal, lung,
ovarian, colorectal, pancreatic

Pivotal in embryonic development and tumorigenesis; maternally
expressed and paternally imprinted; precursor of miRNAs
(miR-675), P53 represses the H19 gene and the H19-derived
miR-675 inhibits p53; interacts with EZH2, MBD1 and induces
gene repression; knockdown reduces tumor size and
metastasis; (")

1, 100–116

KCNQ1OT1 Colorectal, hepatocellular, pediatric
adrenocortical; Beckwith-Wiedemann
syndrome

Paternally imprinted; interacts with PRC1, PRC2, and G9a and
silences KCNQ1 via induction in histone and DNA methylation;
imprinting disruption of the CDKN1C/KCNQ1OT1 domain is
involved in the development of both BWS and cancer;
knockdown results in loss of imprinting in the 50-domain of
KCNQ1OT1; (")

119–123

T-UCRs Colorectal, Barrett's adenocarcinoma,
bladder, liver

CpG-island hypermethylation induced T-UCR silencing is
common in many tumors; inhibits miR-596 via interaction with
YY1, inhibits miR-193b; overexpression inhibits migration and
invasion; (")

128–130

CCAT1 Colorectal, leukemia, gastric, Lung,
esophageal squamous cell carcinoma

Acts as a sponge for let-7 and miR-155, regulates c-Myc, HOXB13,
SPRY4; knockdown reduces cell proliferation andmigration; (")

135, 137

HULC Hepatocellular, pancreatic Acts as a miRNA sponge and sequesters miR-372; potential
biomarker for HCC; knockdown inhibits cell proliferation and
increases chemosensitivity; (")

141, 142

HEIH Hepatocellular Linked with hepatitis-B-virus associated HCC recurrence;
regulates cell-cycle–regulatory genes p15, p16, p21 via
interaction with EZH2; knockdown reduces cell proliferation
and suppresses tumor growth (")

139, 145, 146

HOTTIP Prostate, liver, pancreatic Controls the HOXA locus via interaction with WDR5/MLL;
knockdown suppresses chemoresistance, and mesenchymal
characteristics; (")

150–152

UCA1 Bladder, leukemia, ovarian, breast Potential urine biomarker; promotes chemoresistance; recruits
SWI/SNF to the TCF7 promoter, induces Wnt/b-catenin
signaling and ER redistribution; knockdown increases
chemosensitivity, reduces cell migration and tumor size; (")

157, 158

DLEU1, DLEU2 Leukemia Deleted in lymphocytic leukemia; regulate NF-kB activity, acts as
a precursor for miR-15a and miR-16-1 in leukemia; (#)

164, 165

(Continued on the following page)
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HOTAIR
HOTAIR (HOX transcript antisense intergenic RNA) is one of

themost well-studied lncRNAs that is overexpressed in a variety of
cancers including breast, colorectal, hepatocellular, gastrointesti-
nal, and non–small cell lung carcinomas (Table 1; refs. 4, 45–51).
HOTAIR, a 2.2-kb antisense lncRNA, interacts with two major
gene-silencing factors: PRC2 and LSD1 (lysine specific demethy-
lase 1). PRC2 is a multiprotein complex comprised of EZH2
(H3K27-methylase), SUZ12, EED, and RbAp46/48 (52–54).
LSD1 interacts with corepressors REST and CoREST (54, 55).
H3K27-methylation by EZH2 and H3K4-demethylation by LSD1
are both critical to gene silencing (54).HOTAIR recruits PRC2 and
LSD1 at the target gene, inducing gene silencing via H3K27-
methylation andH3K4-demethylation (54, 56). BRCA1, a critical
player in DNA damage response and breast cancer, also interacts
with EZH2, which in turn interacts with HOTAIR (54, 57, 58).
Thus, BRCA1 and HOTAIR are both interacting partners of EZH2
and may have competitive roles in gene expression and DNA
damage response (59). HOTAIR is also implicated in assembling
E3-ubiquitin ligases during protein degradation (4, 7, 53).

HOTAIR, EZH2, and LSD1 are all highly expressed in breast and
other cancers. HOTAIR represses tumor suppressors such as PGR
(progesterone receptor), PCDH10 (Protocadherin10), PCDHB5
(Protocadherin Beta 5), and JAM2 (Junctional AdhesionMolecule
2; ref. 52). Posttranslational functions of the HOTAIR have also
been identified. HOTAIR induces ubiquitin-mediated proteolysis
via interaction with E3 ubiquitin ligases Dzip3 andMex3b, along
with their respective ubiquitination substrates Ataxin-1 and Snur-
portin-1 (60). This leads to the degradation of Ataxin-1 and
Snurportin-1 (60). Being an oncogenic lncRNA, its expression is
correlated to tumor invasiveness and metastasis (53). HOTAIR
serves as a diagnostic and prognostic marker for multiple cancers.
HOTAIR also regulates the expression of miRNAs such as miR-
130a (in gallbladder cancer cells) and others (4). Studies fromour
laboratory show thatHOTAIR is required for the viability of breast
cancer cells and its expression is transcriptionally regulated by
estradiol via coordination of estrogen receptors (ER) and ER
coregulators, such as the MLL (mixed lineage leukemia) family
of histone methyltransferases, and CBP/p300 (45, 61–65).
HOTAIR is also a target of endocrine disruption by estrogenic

Table 1. LncRNAs: their mechanism of action and significance in cancer (Cont'd )

LncRNA Cancer type Mechanism of action and function References

LUNAR1 Leukemia, B-cell lymphoma Promotes T-ALL growth by inducing IGF1R expression, regulates
IGF1R via interaction with mediator complex; knockdown
reduces cell proliferation and viability; (")

166, 167

BGL3 Leukemia Regulates Bcr-Abl through sponging miRNAs (miR-17, miR-93,
miR-20a, miR-20b, miR-106a, and miR-106b) and via c-Myc-
dependent DNA methylation; (#)

168

HOTAIRM1 Breast, leukemia, colorectal Controls myeloid autophagy and maturation via interaction with
PRC2 and UTX/MLL; knockdown results in retardation of
myeloid cell differentiation; (")

170–172

XIST Ovarian, leukemia Inactivates X chromosome via coating and interaction with
PRC1/2, YY1, CTCF, etc.; knockdown results in enhanced
sensitivity to Taxol; (")

174, 175

FER1L4 Gastric, endometrial Regulates PTEN and the PI3K-AKT pathway by behaving as a
ceRNA for miR-106a-5p; overexpression reduces cell growth
and colony formation; (#)

169, 195

NBAT1 Renal, neuroblastoma Silences neuronal-specific NRSF/REST through association with
PRC2; overexpression results in differentiation of neuronal
precursors; (#)

196, 197

GAS5 Breast, renal, prostate, endometrial Acts as decoy for glucocorticoid receptor (GR), inhibits
transcriptional induction by GR, causes growth arrest and
apoptosis, induces PTEN via inhibiting miR-103; (#)

198–200

TERRA Pancreatic, cervical, gastric, breast Facilitates heterochromatin formation via interaction with TRF1
and TRF2, aids in telomerase function by providing a RNA
template; (#)

205–207

ZFAS1 Breast, colorectal, gastric, liver Interacts with CDK1/cyclin B, EZH2, LSD1/CoREST, acts as a
sponge for miR-150, promotes cell proliferation; knockdown
results in inhibition of cell proliferation, migration, and colony
formation; (")

209–211

PVT1 Breast, pancreatic, ovarian, gastric, lung Promote proliferation via interaction with NOP2 with the aid of
TGFb1, enhances c-Myc stability via inhibiting its
phosphorylation; knockdown results in reduced cell
proliferation and chemoresistance; (")

213–215

MEG3 Renal, gastric, ovarian, liver, lung, brain,
bladder

Represses MDM2, aids in p53 accumulation, represses genomic
loci of genes associated with TGFb pathway via cooperating
with PRC2; overexpression results in apoptosis and inhibition of
proliferation; (#)

218–221

TUG1 Bladder, gastric, lung Silences cell-cycle–associated genes via interaction with PRC2;
knockdown results in inhibition of cell proliferation, invasion,
and colony formation; (")

2, 3, 275–277

Linc-RoR Breast, pancreatic, hepatocellular,
endometrial, nasopharyngeal

Induces epithelial–mesenchymal transition, drug resistance and
invasiveness of cancer cells; promotes invasion, metastasis and
tumor growth through activating ZEB1 pathway; (")

179

NOTE: ", upregulated in cancer (oncogenic); #, downregulated in cancer (tumor suppressor).
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endocrine disruptors such as bisphenol-A (BPA) and diethylstil-
bestrol (DES) that may contribute to cancer (45, 61, 62).

ANRIL
ANRIL (antisense noncoding RNA in the INK4 locus; a.k.a.

CDKN2B-AS) is encoded in the chromosome 9p21 region at the
INK4 locus (Tables 1 and 2; refs. 66–78). Polymorphisms in the
INK4 locus serve as a hotspot for a variety of diseases including
cardiovascular disease, cancer, anddiabetes. ANRIL is an antisense
transcript of the CDKN2B gene (cyclin-dependent kinase inhib-
itor 2B) and controls cell proliferation and senescence via regu-
lating its neighboring tumor suppressors CDKN2A/B by epige-
netic mechanisms. This occurs through interacting with CBX7 (a
PRC1 component) and SUZ12 (a PRC2 component) to induce
gene silencing at the INK4b-ARF-INK4a locus (66). It also
represses tumor suppressor p15. ANRIL is overexpressed in a
variety of cancers including leukemia, breast cancer, and prostate
cancer where CDKN2A/B shows opposite patterns of expression
(79).

Lung Cancer
Lung cancer is the leading causeof cancer-related deaths and the

second most common cancer in both men and women. Deaths
caused by lung cancer exceed those of prostate, breast, and colon

cancer combined. LncRNAs implicated in lung cancer include
MALAT1, NEAT1, SPRY4-IT1, ANRIL, HNF1A-AS1, UCA1,
HOTAIR, GAS5, MEG3, CCAT1, MVIH, H19, CCAT2, AK126698,
SOX2-OT, PVT1, EVADR, PANDAR, BANCR, TUG1, and others
(Fig. 1; Table 1; refs. 80–82).

MALAT1
MALAT1 [metastasis associated lung adenocarcinoma tran-

script; a.k.a. NEAT2 (nuclear enriched abundant transcript 2)],
a 7.5-kb long lncRNA, was originally found to be overex-
pressed in primary non–small cell lung cancers (83–91).
MALAT1 is expressed in many tissues and is evolutionarily
conserved among mammals. MALAT1 undergoes posttran-
scriptional processing to produce a short RNA (cytoplasmic
mascRNA, MALAT1-associated small cytoplasmic RNA) and a
long MALAT1 transcript that are localized to nuclear speckles
and influence the level of phosphorylated splicing-associated
serine arginine (SR) proteins. MALAT1 is also overexpressed in
other cancers including bladder carcinoma, breast cancer,
prostate cancer, and ovarian cancer, and is a potential bio-
marker and therapeutic target (85, 91). Genome-wide analyses
identified multiple mutations in the SRSF1-binding sites of
MALAT1 in breast cancer, suggesting an alternation in the
splicing pattern in these cancers (91).

Table 2. LncRNAs as cancer biomarkers

Cancer LncRNA Biomarker Potential implications Site of detection References

Prostate cancer PCA3 Detection; Prognosis Urine; Tumor 30, 225
LincRNA-p21 Detection; Stratification Urine 199
PCAT-18 Metastasis Plasma 28
MALAT1 Risk of tumorigenesis; Detection Urine; Plasma 240, 241
PVT1 Aggressiveness Tumor 226
TRPM2 Early identification; aggressiveness Tumor 227

Breast cancer ZFAS1 Detection Tumor 212
HOTAIR Detection Serum 228
RP11-445H22.4 Detection Serum 242
HIF1A-AS2; AK124454 Recurrence Tumor 229, 230

Lung cancer MALAT1 Early detection; Risk of metastasis Whole blood; Tumor 87, 231, 232
SPRY4-IT1; ANRIL; NEAT1 Early detection Plasma 92
UCA1 Detection Plasma; Tumor 233

Colorectal cancer HOTAIR Risk of tumorigenesis Tumor 234
HOTAIR; CCAT1; CCAT2 Detection Serum 235
FER1L4 Recurrence; Metastasis Plasma 236
XLOC_006844; LOC152578;
XLOC_000303

Risk of tumorigenesis Plasma 237

Hepatocellular cancer HOTAIR Recurrence after transplant Tumor 51
uc001ncr; AX800134 Detection (especially early-stage) Serum 143
HULC; Linc00152 Detection; Metastasis Plasma 238
RP11-160H22.5; XLOC014172;
LOC149086, HEIH

Risk of tumorigenesis, prognostic factor
for recurrence and survival

Plasma 239

XLOC014172; LOC149086 Risk of metastasis 239
Bladder cancer UCA1 Detection Urine 243

H19 Early recurrence Tumor 100
HOTAIR Overall survival Tumor 244

Leukemia CRNDE Identification of subtypes of AML (acute
myeloid leukemia) (M2 or M3)

Bone marrow, Lymph nodes 245

Ovarian cancer NEAT1 Invasiveness; Prognosis Tumor 246
Renal cancer LET; PVT1; PANDAR; PTENP1;

LINC00963
Early detection Serum 247

Cervical cancer HOTAIR Prognosis; Recurrence Serum 248
Esophageal cancer POU3F3; HNF1A-AS1; SPRY4-IT1 Early screening Plasma 249
Gastric cancer H19 Early screening Plasma 250

LINC00152 Detection; Invasion Gastric juice; Tumor 251
UCA1 Early detection; Prognosis prediction Gastric juice; Tumor 252
CUDR; LSINCT-5; PTENP1 Detection Serum 253
AA174084 Early diagnosis Tumor; Plasma; Gastric juice 254
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Similar to NEAT2, NEAT1 transcripts are also associated with
nuclear paraspeckles and are involved in transcriptional and
posttranscriptional regulation of the expression of genes such as
ADARB2 (adenosine deaminase, RNA-specific B2; refs. 92–96).
NEAT1has two isoforms: a 3.7 kb (NEAT-1-1) and a 23 kb (NEAT-
1-2) long isoform that are widely expressed in several tissues and
overexpressed in breast cancer and acute myeloid leukemia.
NEAT1 knockdown affects the viability and morphology of Bur-
kitt's lymphoma cells (97).

Colorectal Cancer
Colorectal cancer is currently the third most common malig-

nancy worldwide. LncRNAs associated with colorectal cancer
include CCAT1, CCAT2, CCAT1-L, CRNDE, E2F4, HOTAIR,
HULC, MALAT1, H19, FER1L4, PTENP1, KCNQ1OT1, T-UCRs,
ZFAS1, OCC-1, CCAT1-L, and others (Fig. 1; Table 1; refs. 89,
98, 99).

H19
H19 (2.7 kb) is oneof thefirst lncRNAsdiscovered andapivotal

player in embryonic development and tumorigenesis (1, 100–
116). It is a maternally expressed and paternally imprinted gene
located near the telomeric region of chromosome 11p15.5 adja-
cent to IGF2 (insulin like growth factor 2) gene. H19 is conserved
between rodents and humans. miR-675, a highly conserved
miRNA that regulates a variety of transcripts, resides within
exon-1 of the H19 gene (103). H19 acts as a decoy for miRNAs,
modulating their availability and activity. It interacts with tran-
scription repressors, such as EZH2 and MBD1 (methyl-CpG–
binding domain protein 1), and induces repression by recruiting
them to target genes (includingH190s reciprocally imprinted gene
IGF2; ref. 103). H19 is an oncogenic RNA associated with tumor-
igenesis starting from the early stages tometastasis (100, 101, 106,
114, 117, 118). Tumor suppressor p53 and H19 are mutually
counter-regulated (59). P53 represses theH19 gene and the H19-
derivedmiR-675 inhibits p53 and p53-dependent protein expres-
sion (115). The p53–H19 interplay appears to playmajor roles in
tumorigenesis and metastasis (101, 102). H19 expression is
induced by hypoxic stress and linked with epithelial-to-mesen-
chymal transition (EMT), and its overexpression leads to the
activation of genes involved in angiogenesis, cell survival, and
proliferation, triggering malignancies such as liver, breast, colo-
rectal, esophageal, lung, pancreatic, gastric, bladder, and cervical
carcinomas (100, 101, 107).

KCNQ1OT1
KCNQ1OT1 (KCNQ1 overlapping transcript 1) is a 91-kb

nuclear antisense lncRNA that is imprinted from the paternal
allele and originates from intron 11 of the KCNQ1 gene (potas-
sium voltage–gated channel subfamily Q member 1; refs. 119–
124). The KCNQ1OT1 domain is regulated by a functionally
independent imprinting control region (ICR) located in an intron
of KCNQ1 (124). The promoter of the KCNQ1OT1 gene, located
within the ICR locus, undergoes methylation on the maternally
inherited chromosome and demethylation on the paternally
inherited chromosome. Therefore, it preferentially allows
the KCNQ1OT1 gene expression from the paternal allele
(122, 124). It interacts with chromatin-modifying enzymes like
PRC1, PRC2, and G9a and regulates the silencing of KCNQ1 via
induction of histone and DNA methylation (122, 124). The
aberration in KCNQ1OT1 is associated with Beckwith–Wiede-

mann syndrome, and colorectal, hepatocellular, and pediatric
adrenocortical tumors (124, 125).

T-UCRs
T-UCR lncRNAs are about 200 to 779 nt in length and are

generated from ultraconserved regions (UCR) and show tissue-
specific expression patterns (126, 127). T-UCR lncRNAs are
altered in a variety of cancers including colorectal carcinoma,
chronic lymphocytic leukemia, neuroblastomas, hepatocellular
carcinoma, and prostate cancer (127). They play a key role in the
suppression of miRNAs such as miR-596 andmiR-193b involved
in carcinogenesis and apoptosis, respectively (128–131). Modu-
lation of T-UCR expression promotes colorectal carcinoma pro-
gression (4, 7, 132). Notably, the CpG island hypermethylation-
induced epigenetic silencing of tumor suppressor miRNAs
appears to be closely associated with a variety of cancers. Recent
studies also demonstrate that in addition to miRNAs, various
lncRNAs, such as T-UCRs, are silenced via CpG island hyper-
methylation, which is a common feature of many tumor types
(132, 133). Furthermore, the CpG island methylation-induced
silencing of protein coding and noncoding sequences in the sense
strand as well as antisense-transcripts (many antisense lncRNA) is
closely associated with human tumors. For example, antisense
lncRNAVIM-AS1 (vimentin antisense 1), which is regulated via R-
loop (three-stranded RNA-DNA hybrid) formation, is silenced in
colorectal cancer through CpG island hypermethylation (134).

CCAT1
CCAT1 (colon cancer–associated transcript-1; a.k.a. CARLo-

5) is an oncogenic lncRNA located at 8q24.21. CCAT1 expres-
sion is induced by c-Myc that binds to its promoter. CCAT1
epigenetically downregulates c-Myc by acting as a competing
endogenous RNA (ceRNA) for miR-155 that represses c-Myc
expression. It is also involved in the regulation of HOXB13 and
SPRY4 (135–137). CCAT1 has been implicated in acute mye-
loid leukemia (AML), colorectal, esophageal, lung, and other
cancers (138).

Liver Cancer
Hepatocellular carcinoma (HCC) is a leading cause of cancer-

related deaths with an incidence that has tripled since 1980.
Althoughmany lncRNAs are implicated inHCC, themost studied
are MALAT1, HULC, HEIH, and HOTAIR that are known to be
upregulated in HCC (47, 139). Other lncRNAs implicated in liver
cancer are linc00152, HEIH, HOTTIP, DILC, ZFAS1, LET, MVIH,
PCNA-AS1, TUC338, lncTCF7, CCAT1, MEG3, CUDR, LALR1,
and others (Fig. 1; Table 1; ref. 140).

HULC
HULC (highly upregulated in liver cancer), a 1.6-kb oncogenic

lncRNA, is overexpressed in HCC (89, 141, 142). Augmented
levels of the HULC transcript are observed in metastatic liver
nodules from colon cancer. HULC is upregulated in both tumors
and plasma of HCC patients, and is a potential biomarker for
HCC. The SNP in HULC is associated with HCC susceptibility in
hepatitis B virus carriers (143). HULC might function to down-
regulate the activity of miR-372 by acting as an endogenous
sponge (144). Suppression of miR-372 by HULC represses the
translational inhibition ofmiR-372 target genes. HULC promoter
possesses a binding site for transcription factor cAMP response
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element binding (CREB) and its expression is potentially
regulated by CREB phosphorylation (144).

HEIH
HEIH (high expression in HCC), a 1.6-kb SP1-regulated long

lncRNA located in the 5q34.3 locus, is differentially expressed in
HCC, closely associated with HCC recurrence, and a prognostic
factor for HCC (139, 145, 146). HEIH interacts with EZH2 and
regulates EZH2 target genes including cell-cycle–regulatory genes
p15, p16, p21, and p57 (145). Knockdown of HEIH reduces cell
proliferation and suppresses tumor growth (145).

Other lncRNAs implicated in liver cancer are DILC, H19, TCF7,
HOTTIP, and ZFAS1 (139, 147). DILC (downregulated in liver
cancer) is a tumor suppressorwhose expression is inversely related
to those of EpCAM (epithelial cell adhesion molecule), CD24,
and CD90 in hepatoma spheroids (148). HOTTIP (HOXA Tran-
script at the distal Tip) upregulation is associated with liver cancer
metastasis (149, 150). HOTTIP, in conjunction with the WDR5/
MLL complex, mediates the trimethylation of H3K4 and HOXA
gene expression (139, 151, 152).

Bladder Cancer
Bladder cancer is the tenth most common malignancy in

women and the fourth most common in men. LncRNAs impli-
cated in bladder cancer are UCA1, UCA1a, HOXD-AS1, TUG1,
ncRAN, GHET1, MALAT1, MEG3, H19, linc-UBC1, lincRNA-p21,
SPRY4-IT1, and others (Fig. 1; Table 1; refs. 153–155).

UCA1
UCA1 (urothelial cancer associated-1), transcribed from

19p13.12, was originally cloned from the human bladder cell
line, and is overexpressed in embryonic tissues, bladder cancers,
and other cancers (156–158). It promotes chemoresistance
through promoting the expression of wingless-type MMTV inte-
gration site family member 6 (Wnt6; ref. 157). It also plays a role
in b-catenin translocation into the nucleus and TCF7 regulation
via interactionwith SWI/SNF (switch/sucrose nonfermentable) in
other types of cancer (159). UCA1 is a potential urine biomarker
for noninvasive diagnosis of bladder cancer. MALAT1 associates
with SUZ12 and regulates N-cadherin and E-cadherin expression,
promotes tumor growth and metastasis, and forms a fusion gene
in renal carcinoma (153).

Leukemia
Defects in hematopoietic stem cell differentiation and prolif-

eration cause leukemia. A variety of lncRNAs are implicated in
leukemia that include CRNDE, HOTAIRM1, DLEU1, DLEU2,
LUNAR1, BGL3, MALAT1, CCAT1, CCDC26, BGL3, NEAT1,
NALT, UCA1, and others (Fig. 1; Table 1; refs. 160, 161). LncRNA
mutations such as internal tandemduplications in the FLT3 (FMS-
like tyrosine kinase 3) gene (FLT3-ITD) and mutations in the
NPM1, CEBPA, IDH2, ASXL1, andRUNX1 genes are also linked to
recurrent leukemia (162, 163).

DLEU1 and DLEU2
LncRNAs DLEU1 and DLEU2 (deleted in lymphocytic leuke-

mia 1 and 2), originating from the 13q14.3 region, are often
deleted in solid tumors and hematopoietic malignancies like
chronic lymphocytic leukemia (CLL) and lymphomas (164).
DLEU1 and DLEU2 regulate NF-kB activity by regulating genes

that affect NF-kB activity. The promoter regions of DLEU1 and
DLEU2 exhibit demethylation or activation marks in CLL (164).
DLEU2 acts as a precursor for various miRNAs such as miR-15a
and miR-16-1 that are involved in CLL (165).

LUNAR1
LUNAR1 (leukemia-induced noncoding activator RNA-1),

derived from 15q26.3, is a NOTCH-regulated oncogenic lncRNA
in T-cell acute lymphoblastic leukemia (T-ALL), and it promotes
T-ALL cell growth by enhancing IGF1R expression and IGF1
signaling. LUNAR1 recruits the mediator complex on the IGF1R
promoter and regulates its transcription. Abnormal NOTCH1
signaling is closely associated with human T-ALL (166, 167).

BGL3
BGL3 (beta globin locus transcript 3) is a 3.6-kb lncRNA

derived fromchromosome11p15.4. BGL3 expression in leukemic
cells is negatively regulated by Bcr-Abl through c-Myc–mediated
DNA methylation (168). Conversely, BGL3 regulates Bcr-Abl
through sequestering miR-17, miR-93, miR-20a, miR-20b, miR-
106a, and miR-106b (168). These miRNAs are known to repress
the expression of PTEN (169).

HOTAIRM1
HOTAIRM1 (HOTAIR myeloid-specific 1), a 483-bp lncRNA

transcribed from the HOXA cluster, is expressed in the myeloid
lineage. Inhibition of HOTAIRM1 downregulates numerous
HOXA genes critical for hematopoiesis (170–172). HOTAIRM1
has a similar expression pattern as that of HOXA1 and HOXA2 in
thymus, muscle, colon, lung, kidney, spleen, etc. (173).
HOTAIRM1 is induced by all-trans retinoic acid (RA) and is
involved in RA-induced myeloid differentiation. HOTAIRM1
regulates myeloid differentiation genes CD11b and CD18, and
also interacts with chromatin-modifying enzymes including
PRC1, PRC2, and CBX1 (172).

XIST
XIST (X-inactive specific transcript) induces X-inactivation

and is aberrantly expressed in leukemia (162). Homozygous
and heterozygous deletion of XIST in hematopoietic stem cells
leads to the development of blood cancers, suggesting that
aberrant X inactivation promotes carcinogenesis (162). It reg-
ulates genes in various other cancers via interaction with PRC1,
PRC2, YY1, and CTCF, among others (128, 147, 174, 175).
UCA1 knockdown negatively affects the proliferation of AML
cells in vitro (147, 176).

Other Cancers
A large number of lncRNAs are identified in various other

types of cancers; however, their detailed functions and specificity
remain elusive (Fig. 1; Tables 1 and 2; ref. 7). For example,
pancreatic cancer, which accounts for 7% of cancer-related
deaths worldwide, is associated with lncRNAs H19, HOTAIR,
HOTTIP, MALAT1, GAS5, HULC, PVT1, linc-RoR, AF339813,
AFAP1-AS, and others (177–181). Ovarian cancer, being the
fifth deadliest cancer in women, is associated with abnormal
expression of lncRNAs, such as H19, LSINCT-5, HOST2,
NEAT1, HOTAIR, PVT1, CDKN2B-AS, CCAT2, UCA1,MEG3, and
others (182–184). The lncRNAs implicated in renal cancer include
PVT1, LET, PANDAR, PTENP1, HOTAIR, NBAT1, linc00963,
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KCNQ1OT1, GAS5, CADM-AS1, RCCRT1, MEG3, SPRY4-IT1,
HIF1A-AS, MALAT1, and others (185–187). The lncRNAs impli-
cated in gastric cancer include UCA1, H19, GHET1, CCAT1,
linc00152, LSINCT-5, PTENP1, TUG1,MRUL,HOTAIR,MALAT1,
GACAT2, FER1L4,MEG3, HULC, PVT1, ANRIL, GAS5, and others
(188–191). The expression of lncRNAs H19, MALAT1, CRNDE,
ADAMTS9-AS2, DISC2,MEG3, CASC2, TSLC1-AS1, and POU3F3
is positively correlated with malignant glioma (192, 193). MEG3
is a tumor suppressor lncRNA that is highly expressed in normal
brain tissue and downregulated in gliomas (194). FER1L4 (Fer-1-
like protein 4) is a tumor suppressor lncRNA involved in the
regulation of PTEN and inhibition of Akt phosphorylation in
endometrial cancer (195). NBAT1 (neuroblastoma-associated
transcript 1) represses the expression of neuronal-specific tran-
scription factor NRSF/REST through association with PRC2
(196, 197).

GAS5 (growth arrest specific 5) and SRA (steroid receptor RNA
activator) are two lncRNAs implicated in hormone signaling
(198–201). GAS5 produces two splice variant lncRNAs, and its
introns also give rise to several snoRNAs (small nucleolar RNA)
involved in the biosynthesis of ribosomal RNA from its introns.
GAS5 interacts with glucocorticoid receptor (GR) and suppresses
the expressionofGR-regulated genes (202). It causes growth arrest
and apoptosis and induces PTEN via inhibiting miR-103 (198).
GAS5 acts as a tumor suppressor and itsmisregulation and genetic
aberrations are associated with breast cancer, prostate cancer,
leukemia, gastric cancer, and others (203). The lncRNA SRA
interacts with various steroid hormone receptors and stimulates
transcriptional activation, and is associated with breast, uterine,
ovarian, and prostate cancers (204).

TERRA
TERRA (telomeric repeat-containing RNA) is a set of lncRNAs

(ranging in size from 100 bp to 9 kb) transcribed from telomeres.
LncRNAs containingUUAGGGrepeats are generally called TERRA
(205–208). TERRA interacts with telomere-associated TRF1 and
TRF2 (telomere repeat factors 1 and 2), subunits of the origin
recognition complex (ORC), heterochromatin protein 1 (HP1),
H3K9-methylated histone, and facilitates heterochromatin for-
mation at telomeres. TERRA is known to negatively regulate
telomerase and act as a tumor suppressor (207, 208).

ZFAS1
ZFAS1 (ZNFX1 antisense RNA 1) is a spliced and polyadeny-

lated lncRNA transcribed from the 50 end of ZNFX1. It is derived
from chromosome 20q13.13, and is implicated in different types
of cancer including gastric cancer, colorectal cancer, and hepato-
cellular cancer, among others. It interacts with CDK1 and cyclin B
to control p53-dependent cell-cycle regulation (209). In addition,
it promotes cell proliferation by recruiting EZH2 and LSD1/
CoREST to the promoters of genes including KLF2 (Kruppel like
factor 2) and NKD2 (naked cuticle 2) to regulate their expression
(210). It also acts as a sponge for tumor suppressor miR-150
(211). Knockdown of ZFAS1 results in the repression of cell
proliferation, migration, and colony formation (210, 212).

PVT1
PVT1 (plasmacytoma variant translocation 1) is an oncogenic,

intergenic lncRNA derived from 8q24.21 with multiple splice
isoforms (213–215). It is upregulated in different types of cancer
such as ovarian cancer, cervical cancer, and pancreatic cancer,

among others. It suppresses the phosphorylation of Myc, thereby
enhancing its stability (216). Furthermore, it promotes prolifer-
ation via interaction with NOP2 (nucleolar protein 2 homolog)
with thehelpof TGFb (213). PVT1promotes cell proliferation and
invasion in gastric cancer by recruiting EZH2 to repress the
expression of tumor suppressor genes p15 and p16 (214). It
associates with amultifunctional DNA- and RNA-binding protein
called nucleolin involved in oncogene expression and ribosomal
biogenesis, among other activities (217).

MEG3
MEG3 (maternally expressed 3) is an imprinted, tumor-sup-

pressive lncRNA transcribed from chromosome 14q32.2
(218–221). It is a polyadenylated lncRNA overexpressed in
human pituitary, but downregulated in cancer cells (219). Over-
expression of MEG3 in bladder cancer cells has been shown to
induce autophagy and increase cell proliferation (222). MEG3 is
involved in the accumulation of tumor suppressor p53 and
regulation of TGF-b pathway genes involved in cell invasion,
immune regulation, etc. It also interacts with PRC2 to repress
MDM2 (murine double minute 2), which contributes to p53
accumulation (221, 223).

LncRNAs as Biomarkers and in Gene
Therapy

Numerous lncRNAs are aberrantly expressed in various tumors
and some appear to be cancer-specific. Many lncRNAs (or their
processed fragments) are stable in body fluids and detectable in
the plasma and urine of cancer patients (24, 224). Their levels are
indicative of the severity of the disease. All these factors render
lncRNAs an attractive choice for their applications as noninvasive
biomarkers and therapeutic targets for the treatment of cancer
(Table 2; refs. 28, 30, 92, 143, 212, 225–254). LncRNAs differ
from protein-coding genes in many respects. First, due to their
greater abundance than protein-coding genes, a modulation in
larger number of lncRNA expression may be observed in a given
subtype of cancer, which provides a larger window for the detec-
tion of subtype-specific lncRNA-based biomarker. Subtype/tis-
sue–specific lncRNA expressions are crucial for developing novel
diagnostic biomarker and personalized therapy (43, 245).
LncRNAs, being large in size, may fold into complex second-
ary/tertiary structures and scaffolds through which they may
interact with various proteins, transcriptional regulators, mRNA
(complementary), and DNA sequences, which may aid in cancer
initiation and progression. The presence of a large number of
regulatory interaction sites in lncRNAs provides a wider platform
for developing novel structure-based cancer drugs. Furthermore,
given their participation in diverse cell signaling pathways and
tissue-specific expression, lncRNAs can be utilized to formulate
novel strategies for specific cancer subtype diagnosis and targeting
(255, 256).

Few lncRNAs are already implicated as biomarkers and some of
them are in clinical trials (Table 2; refs. 230, 257). For example,
lncRNAPCA3,which is highly upregulated and specific toprostate
cancer, is detectable in urine with levels that correspond to the
severity of prostate cancer (30, 31, 225). As it can be detected in
urine, PCA3 has advantages over the widely used serum-based
prostate cancer biomarker PSA (prostate-specific antigen) for
noninvasive diagnosis of prostate cancer (258). In addition,
PCAT-1, PRNCR1, PCGEM, PlncRNA1, and PCAT-18 are highly
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expressed in prostate tumors and are potential diagnosticmarkers
(Table 2; refs. 44, 259). Circulating HOTAIR may also be used to
diagnose breast cancer (228). ZFAS1, HIF1a-AS2, and others are
also implicated as biomarkers for breast cancer (Table 2). Sim-
ilarly, MALAT1, UCA1, ANRIL, and NEAT1 can be used to predict
early stage as well as metastatic lung cancers (Table 2; ref. 85). The
expression of HOTAIR, CCAT1, FER1L4, and others is linked to
colorectal cancer (Table 2). CpG-island methylation of T-UCR
promoter is also linked to colorectal cancer diagnosis. LncRNAs
H19, HULC, HEIH, linc00152, and MVIH are highly upregulated
in hepatocellular cancer (HCC) and are valuableHCCbiomarkers
(Table 2; ref. 260). HULC expression correlates with histologic
grade and oncoprotein hepatitis B virus X (HBx; ref. 261). Hep-
atitis B virus (HBV)-positive hepatocellular cancer can be detected
using lncRNAs uc001ncr and AX800134. Uc001ncr and
AX800134 have a 100% detection rate in HCC patients (143).
HOTAIR overexpression may be used to predict the recurrence of
HCC and is highly expressed in 65.7%of recurrence HCCpatients
(47, 262). UCA1, H19, and HOTAIR expression may be used as a
biomarker to detect bladder cancer (Table 2; ref. 176). CRNDE is
expressed in the APL (acute promyelocytic leukemia) subtype of
AML ten times more than the other subtypes. This makes CRNDE
a suitable biomarker to detect the APL subtype of AML (245). LET,
PVT1, PANDAR, and PTENP1 expression is linked to renal cancer
(Table 2). Thus, lncRNAs appear to be promising novel diagnostic
andprognosticmarkers for a variety of cancers (Table 2); however,
there are still many challenges and validations required for their
clinical applications.

As lncRNA expressions are differentiallymodulated in different
types of cancer and their expression levels correlate with tumor-
igenesis, tumor aggressiveness, and stages, they are potential
targets for cancer therapy. There are several ways by which
lncRNAsmaybe targeted tomodulate their expression: (i) lncRNA
transcript degradation/destabilization by using lncRNA-specific
siRNAs, antisense oligonucleotide (ASO), gapmers, and ribo-
zymes; (ii) modulating lncRNA transcription by altering the
lncRNA-coded promoter activity (e.g., via inhibition of transcrip-
tion factors binding to respective promoters); (iii) blocking inter-
actions between lncRNAs and regulatory factors—small synthetic
molecules/peptides can be developed that are designed to block
the binding of lncRNAs with protein, DNA, RNA, or other inter-
acting complexes by associatingwith specific bindingpockets; and
(iv) functional disruption of lncRNAs using aptamers that can be
selected to bind at specific structural regions to target lncRNAs and
antagonize their association with their binding partners
(263, 264). For example, siRNA-mediated downregulation of
HOTAIR expression leads to reduced tumor cell viability and
invasiveness and induction of apoptosis in breast tumors (228).
CCAT2 is upregulated in colorectal cancer and has been targeted
by specific miRNAs to suppress colorectal cancer growth
(265–267). Antisense-mediated silencing of MALAT1 prevents in
vivo lung cancer metastasis (85). Breast cancer progression can be
hindered through systemic knockdown of MALAT1 using anti-
sense oligonucleotide (85, 91, 201). Antisense-mediated lncRNA
targeting has shown to be promising in the treatment of other
disorders like Angelman's syndrome through silencing lncRNA
UBE3A-AS (268, 269). Oncogenic lncRNA H19 is overexpressed
in a variety of cancers such as pancreatic tumors. The H19
promoter has been used to express diphtheria toxin (DTA) in
pancreatic cancer cells (117, 118, 270). Administration of
pancreatic tumors with a H19-DTA plasmid construct resulted

in a significant decrease in tumor size and metastasis. The H19
(and IGF2) regulatory sequences can be used to inhibit the growth
and metastasis of colorectal cancer. Overall, lncRNA-based tar-
geted cancer therapies are promising; however, at present, they are
at their infancy and require further development of experimental
strategies, siRNA/antisense delivery strategies, screening novel
small-molecule libraries, and many clinical trials prior to their
success in targeted, lncRNA-based gene therapy.

Apart from evaluating the direct significance of lncRNAs in
cancer diagnosis and therapy, they can also be considered for
improving therapeutic efficacy and development of combination
therapy. Therapeutic resistance (such as chemo- or radioresis-
tance) is a major challenge in cancer treatment; however, this
could be improved by increasing the therapeutic sensitivity of
tumors by modulating a critical cell signaling pathway that con-
fers resistance. As lncRNAs are closely associated with many cell
signaling processes, the modulation of their expression could be
done to improve the therapeutic sensitivity of tumors. One
approach is to resensitize chemoresistant cells by modulating
factors associated with DNA damage response pathways. For
example, knockdown of HOTAIR enhances the sensitivity of
cancer cells to chemotherapeutic agents like cisplatin and doxo-
rubicin (271–273). Cisplatin-mediated upregulation of HOTAIR
in human lung adenocarcinoma cells suppressed p21 (WAF1/
CIP1) signaling pathway and caused a G0–G1 arrest by modulat-
ing the p53 expression and HOXA1 methylation (157, 274).
LncRNA TUG1 (taurine upregulated gene 1; refs. 2, 3,
275–277) overexpression is responsible for the chemoresistance
of lung cancer cells. TUG1 regulates the expression of LIM-kinase
2b and other cell-cycle–associated genes through recruiting EZH2
to its promoter. TUG1 knockdown has been shown to enhance
chemosensitivity in lung cancer (278). SilencingCRNDE results in
the suppression of cell proliferation and chemoresistance in
colorectal cancer. CRNDE inhibits the expression of miR-181a-
5p, which in turn silences Wnt/b-catenin signaling (279). Simi-
larly, HOTTIP promotes chemoresistance via activation of Wnt/
b-catenin signaling (280). GAS5 modulates chemoresistance in
gastric cancer by acting as a sponge for miR-23a that inhibits the
expression of metallothionein 2A (MT2A; ref. 281). In a similar
role, CCAT1 sponges let-7c–mediated release of Bcl-xL. This
involves EMT and resistance to docetaxel (136). MALAT1 knock-
down causes resensitization of glioblastoma multiforme cells to
temozolomide. The MALAT1-mediated chemoresistance in
glioblastoma multiforme cells is made possible via inhibition of
miR-203, thereby activating the expression of thymidylate
synthase (282). Other lncRNAs that may be targeted to increase
the chemosensitivity of tumors include HULC (gastric cancer),
H19 (breast cancer), ODRUL (osteosarcoma), OMRUL (lung
cancer), and PVT1 (pancreatic cancer; refs. 216, 283–285). Thus,
it is evident that the modulation of lncRNA expression can be
exploited to improve the therapeutic sensitivity of tumors and
may also be used for combination therapy.

Conclusions
LncRNAs are emerging stars in cancer, diagnosis, and therapy

(286). The discovery of huge numbers of lncRNA, theirwide range
of expression patterns in various types of cancer, their tumor
specificity, and their stability in circulating body fluids (plasma
and urine) provide a new foundation for developing diagnosis
and therapies for cancer. LncRNA expression may also be used to
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predict the cancer prognosis and patients outcome. LncRNAs
are major regulators of chromatin dynamics and gene regula-
tion, associated with a variety of cell signaling pathways, and
their expressions are influenced by a variety of factors including
hormones, nutrients, age, and sex (162, 287–290). Aberrant
expression, mutations and SNPs of lncRNAs are associated with
tumorigenesis and metastasis. Some lncRNAs act as oncogenes,
whereas others act as tumor suppressors (291). Oncogenic
lncRNAs include PCA3, PCGEM1, PCAT1, PCAT18, CTBP-AS,
SCHLAP1, HOTAIR, ANRIL, MALAT1, NEAT1, H19,
KCNQ1OT1, lncTCF-7, HOTTIP, HULC, HEIH, TUG1, UCA1,
PVT1, and LSINCT5 (286). Tumor suppressor lncRNAs include
GAS5, MEG3, DILC, NBAT-1, DLEU1, DLEU2, TERRA, BGL3,
and others. Novel lncRNAs are still being discovered (292).
Thus, lncRNAs holds strong promise towards the discovery of
novel diagnostics and therapeutics for cancer. However, there
are still many challenges. First, given the large number of
lncRNAs and their up- or downregulation in various cancers,
it is crucial to identify the most important lncRNAs associated
with a specific types/subtype of cancer. Second, the field of
lncRNAs is at its infancy at this point; the structural and
functional information on most lncRNAs remain uncharacter-
ized. Without detailed understanding on the structure and
functions of lncRNAs, developing lncRNA-based therapies is
like "shooting in the dark". In addition, unlike protein-coding
genes, lncRNAs are poorly conserved across different species;
therefore, the structural and functional information as well as
the promising therapeutic strategies developed using in vitro
and animal models may not be easily extended to immediate
human application and may need detailed clinical studies. To
fully explore the potential of lncRNAs in cancer diagnosis and
targeted therapy, it is important to characterize each lncRNA in
detail, identify their cellular functions, roles in diseases, and
SNPs. The cause–effect relationships of each lncRNA need to be

established for determining their tissue specificity and linking
them to tumor stage. The future studies on the use of lncRNAs
as biomarkers and therapeutics should focus not only on their
identification and functional characterization, but also on
optimizing isolation procedures, characterizing variations by
internal and external factors using large numbers of statistically
significant patient cohorts, and development of proper animal
models for testing and validations, prior to clinical trials.
Development of technologies for efficient detection of lncRNAs
and their tissue-specific delivery methods are critical to the
success of the diagnostics and therapeutics. Recent advance-
ments in CRISPR/Cas9 technologies for gene knockout, knock-
in, and point mutations may facilitate understanding the bio-
logical roles of lncRNAs and aid in the development of lncRNA-
based targeted cancer therapy. Nevertheless, discovering novel
lncRNAs, identifying their function and association with var-
ious cancer subtypes, developing novel lncRNA-based strategies
for diagnosis and targeted therapies appear very promising,
bring a new paradigm in cancer research, and may emerge as a
major therapeutic strategy for the treatment of cancer in the
near future.
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