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Abstract

This paper presents ACO_GLS, a hybrid ant colony optimization approach coupled with a guided local search, applied
to a layout problem. ACO_GLS is applied to an industrial case, in a train maintenance facility of the French railway sys-
tem (SNCF). Results show that an improvement of near 20% is achieved with respect to the actual layout. Since the prob-
lem is modeled as a quadratic assignment problem (QAP), we compared our approach with some of the best heuristics
available for this problem. Experimental results show that ACO_GLS performs better for small instances, while its per-
formance is still satisfactory for large instances.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The Facility Layout Problem (FLP) is to find a
good configuration for machines, equipments or
other resources in a given facility in order to opti-
mize production flows while minimizing the total
cost. It has a significant implication on the perfor-
mance of a manufacturing system. There exist many
applications for FLP such as workshop organiza-
tion, construction of new production units, or
equipment assignment. A full description of layout
problem can be found in (Kusiak and Heragu,

1987). Layout problem is known to be NP-Hard
(Sahni and Gonzales, 1976) and could be found in
many classical and theoretical studies. However,
only few layout industrial cases were treated in the
literature. Hicks (2006) developed a genetic algo-
rithm for minimizing material movement in a man-
ufacturing cell with application on practical
problems related to the capital good industry, Lee
et al. (2005) proposed a genetic algorithm for solv-
ing multi-floor facility layout problems with the
inner structure consisting of walls and passages. A
study related to the fashion industry was presented
by Martens (2004).

An extensive amount research has been con-
ducted on the FLP; much of it is based on the Qua-
dratic Assignment Problem (QAP). Other
formulations exist such as mixed integer program-
ming (Montreuil and Laforge, 1990; Montreuil
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et al., 1993; Meller et al., 1999) and graph theoretic
model (Caccetta and Kusumah, 2001). Many meth-
ods used to solve the layout problem are essentially
based on metaheuristics such as Genetic Algorithms
(Tam, 1992; Tavakkoli-Monghaddain and Shayan,
1998; Lee et al., 2005), tabu search (Chiang and
Chiang, 1998), simulated annealing (Baykasoğlu
et al., 2001; Chwif et al., 1998; Mir and Imaam,
2001) and ant colony (Solimanpur et al., 2004; Sol-
imanpur et al., 2005). Other methods combine sim-
ulated annealing with genetic algorithm such as
FACOPT (Balakrishnan et al., 2003) and CRAFT
developed by Armour et al. (1964);. In order to
ensure the convergence to a globally optimal solu-
tion with a minimum computation time, metaheu-
ristics often include local search methods such
2-opt search (Lin, 1965). Another method known as
Guided Local Search (GLS) (Voudouris, 1997) sits
on the top of a local search and permits to escape
from a local minima, and thus to ensure the global
convergence. GLS has been successfully applied to
the Traveling Salesman Problem (TSP) (Voudouris,
1999) and the QAP problem (Mills et al., 2003).

Ant colony optimization (ACO) is a method
widely used for solving quadratic assignment prob-
lem. The first application was proposed by Mani-
ezzo et al. (1994). Since that, many applications
were proposed, and the differences were in the gen-
eration of solutions, the local search method and the
pheromone updating. Stützle and Dorigo (1999)
reviewed the ant algorithm applied to solve QAP
and reported that the ACO algorithms are among
the well performing methods to solve QAP. The
MAX-MIN ant system algorithm (MMAS) pro-
posed by Stützle and Hoos (2000) allows only the
best solution to add pheromone trail during the
pheromone trail update. A bound is used for trail
levels to avoid premature convergence of the search.
Gambardella et al. (1997) proposed a hybrid ant
system HAS-QAP to solve QAP. The originality
of their approach is in that the pheromone trail
was not used to construct solutions but to modify
them in the local search.

Most of the proposed metaheuristics for the FLP
problem are effective for small instances. Their per-
formances become worse with the increase of the
problem size (i.e. number of resources). Solimanpur
et al. (2004) proposed an ACO algorithm for the
inter-cell layout problem formulated as QAP. They
proposed a technique based on the partial contribu-
tion of each assignment for the calculation of a
lower bound used in Maniezzo (1999). It was limited

to only 30 departments because of the complexity of
the problem. In a previous study, ANTabu (Talbi
et al., 2001) using an ant colony optimization with
a tabu local search procedure, was successfully
applied to the QAP for large instances (i.e. 256
resources).

This paper proposes a method for solving a facil-
ity layout problems modeled as a QAP. It is based
upon ant colony optimization with a GLS proce-
dure to escape from local minima. The method is
first applied to a particular industrial problem,
and then, the performance is evaluated on small
instances as well as large instances from the public
library QAPLIB (Burkard et al. 1991). The results
of our method are compared with those of Soliman-
pur et al. (2004), Gambardella et al. (1997) and
Talbi et al. (2001).

The remainder of this paper is organized in four
sections. Section 2 describes the facility layout prob-
lem and the industrial case modeled as a QAP. Sec-
tion 3 presents the proposed ant algorithm, as well
as the guided local search procedure for the QAP.
Section 4 and 5 show modeling and results for the
industrial problem and evaluates the proposed
method’s performance on some QAPLIB instances.
Finally, Section 5 concludes the paper.

2. Problem description and formulation

2.1. Description

The problem comes from a train maintenance
facility which is composed of buildings established
on parallel railways. Each vehicle essentially crosses
two buildings, x1 and x2 specialized in painting and
disassembling respectively as shown in Fig. 1. Vehi-
cles are first treated on external rails, and then move
inside and between the two buildings following a
given sequence before ending their course.

In order to model the problem, each rail is
decomposed into zones called car location where
the maintenance tasks are performed.

The cars to be treated arrive in batches and travel
in the various buildings according to their sequences.
They may travel transversally carried by a trans-
porter which moves on a fixed trajectory. An on-rail
transporter permits movements parallel to the rails.
Some tasks require a long duration, which could
occupy locations for a long time. These tasks repre-
sent bottlenecks for the workshop. In the current
workshop, some cars must be moved out constantly
in order to let access to other cars due to lack of loca-
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tions. The current workshop layout has been proved
to be very constraining for the planning of the pro-
duction line. The problem is to find a layout of the
resources in one of the buildings, in order to opti-
mize the flow of production between them.

In other words, the problem is to find a new
resource configuration in one of the buildings
(Fig. 2) in order to optimize (minimize) the produc-
tion flow between all resources (facilities).

We consider N resources to be assigned to N sites
or car locations in the building. Given a distance
matrixD, where each element dk,w denotes a distance
between location k and w, for k, w = 1, 2, . . . ,N, a
flow matrix F, where each element fi,j denotes a flow
cost between resource i and j, for i, j = 1, 2, . . . ,N.

The flow cost depends on the number of trips
between two resources in a given time horizon. In
the problem considered, the matrix flow is not sym-
metric because of precedence constraints.

The distance matrix is symmetric. The distance
calculation is related to the minimum vehicle num-
ber to move inside a building in order to make an
exchange. As an example in Fig. 3, d(2,3) = 0,
d(1,3) = 1 (by crossing position 2) and d(2,6) = 2
(by crossing position 1 and 5).

2.2. Quadratic assignment problem (QAP)

formulation

The QAP has been traditionally used to model
the FLP with some assumptions. In our industrial
problem, the sizes of vehicle locations are identi-
cal and the distances between the locations are

Fig. 1. The vehicle path in a train maintenance facility.

Fig. 2. Building to layout.
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predefined numeric values. Therefore, it was possi-
ble to formulate our problem as a QAP.

QAP which was first introduced by Koopmans
and Beckman (1957) is the problem of allocating a
set of facilities to a set of locations to minimize
the total cost associated not only with the distances
between locations, but also with the flows.

fi,j denotes the flow between facilities i and j and
dk,w the distance between locations k and w. A var-
iable P(i, j) is then defined as:

pðijÞ ¼
1 if the facility i is assigned to the location j;

0 else:

�

For most cases, the cost associated with facility i1as-
signed to location j1 and facility i2 assigned to loca-
tion j2 is considered as proportional to the product
of the flow fi1i2 and the distance dj1j2 . Thus, the
QAP can be written as follows:

Minimize Z ¼ Ri1Ri2Rj1Rj2fi1i2dj1j2P ði1; j1ÞPði2; j2Þ
s:t: 8 j;RiP ði; jÞ ¼ 1; 8 i;RjP ði; jÞ ¼ 1:

After modeling of the problem we apply a method
based on ant colony optimization to solve it.

3. Ant colony optimization and guided local search

In this section, we first present the ant colony
optimization and the general algorithm. Then, we
detail the elements of the ant colony algorithm
adapted to the layout problem. We coupled ant
algorithm with a guided local search. The definition
of this method and the application on the Quadratic
assignment problem are presented in Section 3.2.
and the complete algorithm ACO_GLS is presented
in Section 3.3.

3.1. Ant colony optimization

The principle of ACO algorithms (Corne et al.,
1999; Dorigo et al., 2000) is based on the way ants
search for food. Each ant takes into consideration

(probabilistic choice) pheromone trails left by all
other ant colony members which preceded its
course, the pheromone trail being a trace, a smell
left by every ant on its way. This pheromone evap-
orates with time, and therefore the probabilistic
choice for each ant changes with time. After many
ant courses, the path to the food will be character-
ized by higher pheromone traces and thus all ants
will follow the same path. This collective behaviour,
based upon a shared memory among all colony ants
could be adapted and used for solving combina-
torial optimization problems with the following
analogies:

The real ant search space becomes the space of
the combinatorial problem solutions.
The amount of food inside a source becomes the
evaluation of the objective function for the corre-
sponding solution.
The pheromone trails become an adaptive shared
memory.

Ant colony optimization (ACO) problems could
therefore be encoded as finding the shortest path
in a graph. One of the first applications of ACO
was the travelling salesman problem.

In the general case, the ant colony algorithm
applies the artificial ants concept, it is represented
by the following steps:

Step 1: Initialization of parameters.
Step 2: Construction of solutions.
Step 3: Local search algorithm.
Step 4: Pheromone updating rule.
Step 5: Return to 2 until a given stopping criterion

satisfied.

The ant colony algorithm adapted to the layout
problem is composed of the following elements:

1. construction of solutions,
2. heuristic information,
3. pheromone updating,
4. selection probability,
5. local search,
6. diversification.

3.1.1. Construction of solutions

In the proposed algorithm, it is assumed that
each ant initially assigns a task i to location j noted
(i, j), then another task to another location k, and so

Fig. 3. An example of distance calculation inside a building.
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on until a complete solution is obtained. A tabu list
represents the set of tasks that the ants has already
assigned, the list of the couples (i, j). This list ensures
that all the tasks are assigned to locations. The cri-
terion of the tasks assignment takes into account the
probability of assignment with a given site, and
depends on two terms, one relating to each ant (vis-
ibility) and the other relating to the quantity of
pheromones deposited by the whole of the ants.

3.1.2. Heuristic information

The ants are not completely blind, they calculate
the cost relating to the assignment of a task to a
given site. This cost takes into account the flow
and distances matrix. Heuristic information, called
visibility is a function of the assignment cost. Several
formulas were used in the literature and each one is
adapted to a given problem. Concerning QAP, the
assignment of a task i to the site l depends on the
tasks assigned before. We define the cost associated
with the assignment (i, l) as

Cði; lÞ ¼
Xl�1

s¼1

ðfrðsÞi � dsl þ firðsÞ � dlsÞ; ð1Þ

where r denotes a permutation of resources under
construction. The visibility which represents the
desirability of move, is defined as

gil ¼
1

1þ
Pl�1

s¼1ðfrðsÞi � dsl þ firðsÞ � dlsÞ
: ð2Þ

The reason for which number 1 is added to the
denominator of the fraction in (2) is for avoiding
division by 0. This formula means that the assign-
ments with smaller contribution to the objective
function would be more desirable for selection.

3.1.3. Pheromone updating

The pheromone updating mechanism is repre-
sented by the following equation:

silðtÞ ¼ ksilðt � 1Þ þ
X
k

Dskil; ð3Þ

where sil(t) is the quantity of pheromone associated
with the assignment of the task i to location l for
each ant k for the iteration t. As an ant chooses this
assignment, the quantity sil(t) increases. The param-
eter k is a scaling factor. A large k results in quick
convergence to a local optima solution. Finally,

Dskil ¼
X
k

Bestfit

fit½k� ð4Þ

denotes the magnitude of change in the trail level of
an assignment through ant. As seen, the smaller is the
fitness solution fit[k] obtained by ant k, the more
would be the increment in trail levels selected by
ant k.

3.1.4. Selection probability

An ant k chooses task i to assign to location 1 by
the following probability:

pkil ¼
a� sil þ ð1� aÞ � gilP

i6¼Tabuk
ða� sil þ ð1� aÞ � gilÞ

; ð5Þ

where a contributes to make a balance between the
choice adopted by the whole of the ants (a near to 1)
and the choice of each ant based on its own visibility
(a near to 0). We note that a task is assigned to a
location if the relative quantity of pheromones is
significant or if the associated cost is weak. Finally,
the task having the largest probability is assigned to
location l.

3.1.5. Local search

We choose local search method 2-opt which is
simple and well adapted to QAP (Solimanpur
et al., 2004). This method applies to a given solution
all possible permutations of pairs of tasks. The per-
mutation giving the minimal cost is selected as a
local minimum next to the starting solution. This
process is repeated until no improvement is
observed.

In order to limit computation time during the
exchanges, we made the following simplification; if
the exchange is done between the elements pi and
pj of the permutation p, the difference in the objec-
tive function value will be then:

Dðp; i; jÞ ¼ ðdii � djjÞðfpjpj � fpjpjÞ
þ ðdij � djiÞðfpjpi � fpipjÞ
þ
X
k 6¼i;j

ðdki � dkjÞðfpkpj � fpkpiÞ

þ ðdik � djkÞðfpjpk � fpipk Þ: ð6Þ

This algebric simplification was used by Gambard-
ella et al. (1997) when they propose HAS-QAP, a
hybrid ant colony system applied to the quadratic
assignment problem.

The local search does not necessarily lead to a
global minimum. In most cases, it converges to a
local minimum. For this, a guided local search
(GLS) method is used to ‘‘penalize’’ the local mini-
mum found in order to converge to the global min-
imum. GLS will be explained in detail later.
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3.1.6. Diversification

Used by Gambardella et al. (1997), the diversifi-
cation mechanism is activated if during a number
of iterations max_iter, no improvement to the best
generated solution is detected. Diversification con-
sists of erasing all the information contained in
the pheromone trail by a re-initialization of the
pheromone trail matrix and of generating randomly
a new current solution for all the ants but one that
receives the best solution produced by the search so
far. Another possibility is to erase all pheromone
trails except for the best solution.

Ant colony algorithm
We propose the following general ant colony

optimization algorithm with 2-opt.

Step 1: Initialization of parameters for all the tasks
and locations.

Step 2: For each ant
(a) assign tasks to locations with a probabil-

ity p,
(b) update the pheromones,
(c) if the best solution is not improved until

max_iter iterations, sil = 0, except for the
best solution,

Step 3: Return to Step2 until stopping criterion is
satisfied.

3.2. Guided local search (GLS)

Guided Local Search (GLS) (Mills et al., 2003) is
a metaheuristic which sits on the top of a local
search algorithm. When the given local search algo-
rithm settles in a local optimum, GLS changes the
objective function, by increasing penalties in an aug-
mented objective function, associated with features

contained in the local optimum. The local search
then continues to search using the augmented objec-
tive function.

The choice of solution features depends on the
problem type, and each feature fi defined must have
the following components:

1. An indicator function Ii(s) indicating whether the
feature is present in the current solution or not. It
is equal to 1 if the feature fi is present in the solu-
tion s and 0 otherwise.

2. A cost function ci(s) which gives the cost of hav-
ing fi in s.

3. A penalty pi initially set to 0, used to penalize the
occurrence of fi in local minima.

When the local search returns a local minimum
s, GLS increases the penalty of the features of s
which have maximum utility util(s, fi) defined as
follows:

utilðs; fiÞ ¼ I iðsÞ
ciðsÞ
1þ pi

: ð7Þ

The idea is to penalise the features, which have high-
est costs first. GLS uses an augmented cost function
(8) in order to guide the local search out of a local
optimum. The idea is to make the local minimum
more costly than the solutions in the surrounding
search space, where the same features are not
present.

hðsÞ ¼ gðsÞ þ k0
Xn

i¼1

I iðsÞ � pi; ð8Þ

where g(s) is the cost function and k 0 a parameter
used to alter the diversification of the search for
solutions. A higher value for k 0 will result in more
diverse search. The application of GLS for the
QAP problem is realised with the following analo-
gies: The feature fi;pi of a solution s corresponds
to the assignment of task i to the location pi. The
cost related to feature fi;pi depends on the interac-
tion of the task i with all other tasks of the solution
s. This cost is given by

Cði; piÞ ¼
Xn

j¼1

fijDpipj : ð9Þ

The value k 0 well adapted to the QAP is given by

k0 ¼
Pn

i¼1

Pn
j¼1fij �

Pn
i¼1

Pn
j¼1Dij

n4
: ð10Þ

The application of GLS technique to the QAP prob-
lem could be summarized in the following:

Starting from the current solution, a local search
method (2-opt for example) is used to find a local
minimum, with respect to the augmented cost func-
tion. If this minimum has a cost (not augmented)
lower than the lowest cost ever found, it is saved
as the best ever found solution. Finally, the assign-
ment having the maximum utility would have its
corresponding penalty increased.

The GLSQAP algorithm could be summarized as
follows:

Step 1: Calculation of k 0.
Step 2: The best solution s 0 = initial solution s.

638 Y. Hani et al. / European Journal of Operational Research 183 (2007) 633–642



Step 3: Perform a local search 2-opt with respect to
the augmented cost function, s* is found as
the solution having the lower augmented
cost.
If cost (s*) < cost (s 0), replace s 0 by s*.
Find the assignment (feature) of s* having
the maximum utility, let it be fi;pi for exam-
ple. Increase the corresponding penalty:
pi;pi ¼ pi;pi þ 1.

Step 4: Return to step 3 until a given stopping crite-
rion is satisfied.

Step 5: s 0 is the best solution found for the original
problem.

3.3. Complete algorithm

Finally, the algorithm procedure of ant colony
optimization with GLS is given as follows:

Step 1: Initialization of parameters.
Step 2: For all ants.

(a) assign tasks to locations with the given
assignment probability,

(b) perform the guided local search
GLSQAP,

(c) update the pheromones,
(d) if the best solution is not improved until

max_iter iterations, sil = 0, except for the
best solution.

Step 3: Return to step2 until a stopping criterion is
satisfied.

4. Application to the industrial case

We consider N resources to be assigned to N sites
or car locations in the building. Given a distance
matrix D, where each element dk,w denotes a dis-
tance between location k and w, for k, w =
1,2, . . . ,N and a flow matrix F, where each element
fi,j denotes a flow cost between resource i and j,
for i, j = 1, 2, . . . ,N.

Our problem is modeled as a QAP. The flow cost
depends on the number of trips between two
resources in a given time horizon. In the problem
considered, the matrix flow is not symmetric
because of precedence constraints.

The distance matrix is symmetric. The distance
calculation is related to the minimum number of
vehicles to move inside a building in order to make
an exchange.

Model parameters:

N total number of locations
rij resource j assigned to task i

Dk,w distance between locations k and w. This
distance is defined as the number of usable
locations between both resources

frij;ri0j0 production flow between the resources rij
and ri0j0. This flow is evaluated as the num-
ber of cars passing between the two re-
sources

prij ;k ¼
1 if rij is assigned to the location k;

0 else;

�
ð11Þ

TEk ¼
1 if the location k is standedized;

0 else;

�
ð12Þ

TESk ¼
1 if the locationkis specialized;

0 else:

�
ð13Þ

In order to optimize the production flow, we define
a quadratic function Z to minimize:

Z ¼
X
i

X
j

X
i0

X
j0

X
k

X
w

frij ;ri0j0 � Dk;w

� P rij ;k � P ri0j0 ;w: ð14Þ

If the unusable locations are excluded, the following
constraints should be added:

8 k :
X
i

X
j

prij;k ¼ 1; ð15Þ

8 i; j :
X
k

prij ;k ¼ 1; ð16Þ

TEk þ TESk ¼ 1: ð17Þ

Constraints (15) and (16) are the standard con-
straints for the regular assignment problem. Con-
straint (17) implies that all occupied locations are
either specialized or standardized.

5. Experimental results

5.1. Parameters

The algorithm was implemented using Visual
C++ 6.0. on a Pentium 3 with 1.8 GHz CPU speed.
In the proposed algorithm four parameters: ant

number AN, alpha, max_iter ands0 affect the perfor-
mance of the algorithm. To find the appropriate
parameters for our problem, pilot runs were per-
formed. Ant number AN was tested between 5
and 60, and a compromise between the quality of
the results and the convergence time was found
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for AN = 20. When AN was fixed, the best conver-
gence was found for max_iter = 10 and alpha = 0.6.

Usually, alpha is close to 0.5. In our case the
value 0.6 indicates that the construction of the solu-
tions more supports the pheromone trails than the
individual ant investigation. This value was found
to be well adapted with the GLS procedure. Table
1 lists the appropriate values.

5.2. Industrial application

The industrial problem consists of 72 locations
with 27 unusable, 39 specialized and 6 standardized
locations. The actual resources assignment was
taken as an initial condition for the algorithm. All
calculations were done based upon data for one year
planning.

The actual layout in the workshop produces a
cost of 425, however, our algorithm ACO_GLS pro-
duces a solution with an improvement of 19.6% with
respect to the actual layout. This means that it con-
verges to a better solution, which proves its ability
to solve an industrial layout problem.

We also found the exact solution of the problem
by using an enumeration method since only six tasks
needed to be assigned. The solution is the same as
what was found by the algorithm. This implies that
the algorithm converges to the optimal solution for
this industrial problem.

The proposed application may be useful for the
industrial case in the future. In fact, as stated above
in the problem description, the industry is trying
to increase its performance which means solving
other facility problems. In addition, other vehicle
sequences will be added, and many locations need
to become free in order to accept new tasks. As it
can be imagined, the future problem in the industry
is to layout a greater number of locations which
may reach 30–40 locations. The proposed ACO-
GLS needs to be tested for large instance problems
and its performance has to be evaluated with respect
to other known algorithms. For this purpose, public

instances were tested and results were compared
with other studies.

5.3. Generalization

The performance of this algorithm was tested on
instances from the library QAPLIB (Burkard et al.,
1991). We first compare our algorithm with the
HAS-QAP (Gambardella et al., 1997) method based
on ant colonies. We then compare it with ANTabu
(Talbi et al., 2001) which is compared with other
methods based on genetic algorithms, simulated
annealing, tabu search or ant colony and with a
recent ant colony optimization algorithm proposed
by Solimanpur et al. (2004), which is adapted for
problems with a small number of locations. Table
3 compares the results of all the cited algorithms
for small instances with a number of locations fall-
ing between 19 and 30.

The instances we chose include the regular and
irregular problems of QAPLIB. The difference rela-
tive to the QAPLIB best known solution is given as
a percentage gap. It is almost impossible to have the
same experimental settings as for previous studies,
but in order to give an idea on the computation
time, the mean execution time over 10 runs is shown
in Table 2.

Table 2 proves that for the instances with up to
30 tasks, ACO_GLS performs better than all other
algorithms in comparison.

In order to generalize the application of our algo-
rithm, large instances from the QAPLIB were stud-
ied with different classes of problems. Results are
shown in Table 3. We have compared those algo-
rithms on a set of 12 instances, ranging from 35 to
128 locations.

For larger instances, the results given by
ANTabu are a little bit better, so we may have to
perform more complicated local search in order to
escape local minima in the problems with large
instances. It is shown (Table 3) that our algorithm
ACO_GLS performs better than HAS-QAP. How-
ever, our algorithm can still obtain satisfactory solu-
tions for large instance.

The proposed ACO-GLS algorithm proved to
converge perfectly for instances up to 40 locations
as shown in Tables 2 and 3. This performance is
quite satisfactory for industrial problems because
real life problems usually do not exceed 30–40 loca-
tions. Therefore, this algorithm will be a very useful
tool for layout optimization in the real life industrial
case explained in this paper.

Table 1
Parameter values

Parameter Value

AN 20
Alpha 0.6
max_iter 10
s0 0
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6. Conclusion

In this paper we have proposed a robust meta-
heuristic algorithm for the layout problem modeled
as a QAP. The algorithm is based on ant colonies
optimization and guided local search. GLS uses an
augmented cost function in order to guide the local
search out of a local optimum.The development of
this algorithm is motivated by an industrial case in
a train maintenance facility. We applied it to one
industrial case with six locations, and found the
optimal solution. Since the number of locations is
to be increased in the future, the performance of
our proposed ant algorithm is tested over a number
of problems selected from the literature and com-
pared to many other existing algorithms. Results
show that an improvement in performance com-
pared to HAS-QAP, ANTabu and a Solimanpur
et al. ACO for problems with the number of loca-
tions up to 40 can be obtained for our algorithm

ACO_GLS. Therefore, ACO_GLS is the most
adapted algorithm for this industrial case and for
other adapted layout problems with number of loca-
tions less than 40; however, results are still satisfac-
tory for layout problems with larger instances.

The future work includes finding more compli-
cated local search in order to have better results
for large instances and finding a method that can
treat problems with more complicated constraints.
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