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Abstract

We consider queuing systems where customers are not allowed to queue; instead of that they make repeated attempts, or retrials,
in order to enter service after some time. The performance of telephone systems and communication networks modelled as retrial
queues differs from standard waiting lines because typically the retrial group is an invisible queue which cannot be observed. As a
result, the original flow of primary arrivals and the flow of repeated attempts become undistinguished. Our aim in this paper is to
consider some aspects of this problem. Thus, we focus on the main retrial model of M /G/1 type and investigate the distribution of
the successful and blocked events made by the primary customers and the retrial customers.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper, we deal with a branch of the queuing theory, retrial queues, which is characterized by the following
feature: a customer who cannot receive service (due to finite capacity of the system, balking, impatience, etc.) leaves
the service area but after some random time returns to the system again. As a consequence, repeated attempts for
service from the retrial pool of unsatisfied customers are superimposed on the ordinary stream of arrivals of first
attempts.

We may find queues with returning customers in our daily activities as well as in many telephone and
communication systems. The following examples motivate the interest of retrial queues in telephone systems and
local computer networks.
Example 1. Telephone systems

Everybody has experienced that a telephone subscriber who obtains a busy signal repeats the call until the required
connection is made. As a result, the flow of calls circulating in a telephone network consists of two parts: the flow
of primary calls, which reflects the real wishes of the telephone subscribers, and the flow of repeated calls, which
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is the consequence of the lack of success of previous attempts. This consideration brings into focus the need of the
retrial queues as a proper modelling of customer behavior in modern telephone systems (cellular networks, auto-repeat
facilities, repeat-last-number, etc.).
Example 2. Random access protocols in communication networks

Consider a communication line with slotted time which is shared by several stations. If two or more stations are
transmitting packets simultaneously then a collision takes place. As a result, all the involved packets are destroyed
and must be retransmitted. The stations would try to retransmit in the nearest slot but then a collision occurs with
certainty. To avoid this, each station, independently of the other stations involved in the conflict, may either retransmit
the packet with probability p or delay actions until the next slot with probability 1 − p. In other words, each station
introduces a random delay before the next attempt to transmit the packet.

Apart from their practical applications, the retrial queues raise interesting mathematical problems. Because of
the retrial feature, the underlying stochastic process that represents the state of the system is not space-homogeneous.
This creates severe analytical problems and allows explicit formulae only in a few special cases (M /H2/1 retrial queue,
M /M /c retrial queue with c ≤ 2). In contrast, the retrial literature is rich in approximating and numerical methods
(see [4–6] and the references therein).

Our main goal in this paper is to investigate the distribution of the following performance descriptors of the
customer’s behavior: (i) the successful retrials, (ii) the successful arrivals, and (iii) the blocked retrials. We will show
that the number of blocked primary arrivals amounts to the number of successful retrials referred to a busy period.
Hence, our three measures provide a full description of what is relevant in practice in order to distinguish between
primary arrivals and repeated attempts behaviors. The knowledge of the distribution of these descriptors seems of
interest in its own right. We also refer the reader to Section 7, where we will illustrate the applicability in optimal
design problems. Our attention is paid to methods for the computational analysis of the performance measures under
study. To this end, we propose direct methods for the computation of the probability mass functions instead of using
an alternative approach based on generating functions. The main advantage of the direct approach is in avoiding the
numerical inversion of the generating functions.

As related work we mention the recent work of the authors [2] who introduced these descriptors for the main
multiserver model of M /M /c type. Although we study the same descriptors, the approach in this paper is different.
The M/M/c retrial queue is a Markovian model and, consequently, it is investigated at the epochs when any transition
(i.e., arrival, departure, successful retrial) occurs. In contrast, the M /G/1 retrial queue is a semi-Markovian model
which must be studied at the service completion epochs. As a result, the analysis of the M /G/1 queue is more involved.
In particular, the study of the number of blocked retrials becomes far harder because an arbitrary number of blocked
primary arrivals occurring during the current service time influence the number of retrials. We also remark the paper
by Artalejo and Falin [3] where two structural characteristics of the orbit, namely, the orbit busy period and the orbit
idle period, were investigated. To illustrate the active role of the retrial queues over the last few years, we mention a
recent paper published in this journal [21] as well as some other recent publications [1,8–12,14–16,18–20].

In the next section we describe the queuing model under consideration; this is followed by Section 3 where we
define our performance descriptors and state some basic relationships among them. In subsequent Sections 4–6,
we deal with the computational analysis of the three proposed descriptors. Simple probabilistic arguments lead
to an efficient recursive scheme for the exact computation of the probability mass function of the number of
successful retrials. The equations governing the dynamics of the number of successful arrivals and the number
of blocked retrials become more involved. As a result, we propose some approximating assumptions (truncation
of the retrial group, use of phase type (PH) distributions, reallocation of arrivals). In Section 7 we present some
numerical results including an optimal design problem. Finally, in Section 8, we suggest possible directions for further
studies.

2. The queuing model

We next describe the main single-server queuing system of M /G/1 type. Primary customers arrive according to a
Poisson process of rate λ. If a primary customer finds the server free, then he/she automatically receives service. The
service times are general with probability distribution function B(x) (B(0) = 0), Laplace–Stieltjes transform β(s)
and moments βk , for k ≥ 1. On the other hand, any arriving customer who finds the server busy leaves the service area
and joins a retrial group called orbit. The policy of access from the orbit to the server is governed by an exponential
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law with rate jµ, given that the number of customers in orbit is j ≥ 0. We assume that the flow of primary arrivals,
intervals between repeated attempts and service times are mutually independent.

Note that the state of the system at time t can be described by the process X (t) = (C(t), N (t), ξ(t)), where C(t)
is the state of the server (free/busy) and N (t) is the number of customers in orbit at time t . If C(t) = 1, then ξ(t)
denotes the time from the last service starting before time t . In what follows, we neglect the elapsed time ξ(t), so
the system state reduces to S = {0, 1} × N. Let ρ = λβ1 be the utilization factor. If ρ < 1 the system is stable
and, in particular, the busy period is finite with probability 1. Moreover, if ρ < 1 then the limiting probabilities
pi j = limt→∞ P{C(t) = i, N (t) = j} exist and are positive.

3. The performance descriptors

We now define our performance descriptors of the customer’s behavior: Rs is the number of successful retrials
during a busy period, As is the number of successful arrivals during a busy period and Rb is the number of blocked
retrials during a busy period. The three measures are referred to a busy period which is defined as the first passage
time to (0, 0), given that the initial state is (1, 0).

Note that the number of times per busy period that process X crosses up from j − 1 to j customers in orbit (i.e., a
blocked arrival occurs) is equal to the number of down crosses from j to j − 1 (i.e., a successful retrial occurs). Thus,
we get

Rs
= Ab, (1)

where Ab denotes the number of blocked arrivals during a busy period. Since the two descriptors are coincident, we
only need to study one of them, we say Rs .

We also notice the two basic relationships:

I = 1+ As
+ Ab, (2)

I∑
i=1

Ri = Rs
+ Rb, (3)

where I denotes the number of customers served during a busy period and Ri is the number of repeated attempts made
by the i-th arrival until it gets service.

The relationships (1)–(3) also hold for the M /M /c retrial queue [2]. Then, it can be proved that

E[Rs
] = E[Ab

],

E[I ] = 1+ E[As
] + E[Ab

],

E[I ]E[R] = E[Rs
] + E[Rb

],

where R denotes the number of repeated attempts made by an arbitrary retrial customer.
It is known [4,7] that

E[I ] = p−1
00 =

1
1− ρ

exp

{
λ

µ

∫ 1

0

1− β(λ− λu)

β(λ− λu)− u
du

}
, (4)

E[R] =
ρ

1− ρ
+

λβ2µ

2(1− ρ)
. (5)

Thus, we easily find that

E[Rs
] = E[Ab

] = p−1
00 ρ, (6)

E[As
] = p−1

00 (1− ρ)− 1, (7)

E[Rb
] = p−1

00 (E[R] − ρ) . (8)
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4. The number of successful retrials

In this section, we derive recursive equations for the exact computation of the probability mass function P{Rs
= r},

for r ≥ 0. Let x s
i (r) be the probability of having exactly r ≥ 0 successful retrials during the remaining busy period,

given that a service time has just been completed leaving behind i customers in orbit, for 0 ≤ i ≤ r . We notice that
x s

0(r) = δr0, for r ≥ 0, where δr0 denotes Kronecker’s function.
Then, the probability distribution of Rs satisfies that

P{Rs
= r} =

r∑
i=0

ci x s
i (r), r ≥ 0, (9)

where ck =
∫
∞

0 e−λx (λx)k/k!dB(x), for k ≥ 0, is the probability that k arrivals occur during a service time.
In the next theorem, we derive equations for the probabilities x s

i (r).

Theorem 1. For each fixed r ≥ 1, the probabilities x s
i (r) can be written in matrix form as

Mr xs
r = Br x̃r , (10)

where xs
r =

(
x s

1(r), . . . , x s
r (r)

)′
, x̃r =

(
δr1, xs

r−1

)′
( x̃1 ≡ 1), and Mr =

(
mi j

)
and Br =

(
bi j
)

are square matrices of
order r with elements

mi j =

0, if 1 ≤ j < i ≤ r,
λ(1− c0)+ iµ, if j = i,
−λc j−i , if 1 ≤ i < j ≤ r,

bi j =

{
0, if 1 ≤ j < i ≤ r,
iµc j−i , if 1 ≤ i ≤ j ≤ r.

Proof. We analyze the motion between two successive service completion epochs in order to find the dynamics of the
probabilities x s

i (r). This gives

x s
i (r) =

λ

λ+ iµ

r∑
j=i

c j−i x s
j (r)+

iµ

λ+ iµ

r−1∑
j=i−1

c j−i+1x s
j (r − 1), 1 ≤ i ≤ r. (11)

Eq. (11) is derived by noting that the previous departure left i customers in orbit. Then, the next customer getting
service may be a primary arrival (with probability λ(λ + iµ)−1) or may come from the orbit (with probability
iµ(λ+ iµ)−1). In either case, we must record the number of arrivals occurring during the subsequent service time so
that, at its completion, the accumulated number of customers who visited the orbit never reaches r + 1.

For each fixed r ≥ 1, we put (11) in matrix form which leads to (10). �

Since the system (10) is upper triangular, it is suitable for recursively getting the probabilities x s
i (r) and, consequently,

P{Rs
= r} is determined from (9).

5. The number of successful arrivals

We now turn our attention to the study of the number of successful primary arrivals. We approximate the M /G/1
retrial queue with infinite orbit by the truncated model with orbit capacity K ≥ 1. Blocked customers finding the
state (1, K ) upon arrival are lost. The necessity of dealing with a truncated system will be explained at the end of this
section.

Let x s
i (a) be the probability of having a ≥ 0 successful arrivals during the remaining busy period, given that a

service time has been completed leaving behind i customers in orbit, for 0 ≤ i ≤ K . We notice that x s
0(a) = δa0.

Now, we have

P{As
= a} =

K−1∑
i=0

ci x s
i (a)+

(
1−

K−1∑
i=0

ci

)
x s

K (a), a ≥ 0. (12)
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Theorem 2. For each fixed a ≥ 0, the probabilities x s
i (a) satisfy the following system:

Mxs
0 = bs

0, (13)

Mxs
a = Bxs

a−1, a ≥ 1, (14)

where xs
a =

(
x s

1(a), . . . , x s
K (a)

)′
,bs

0 = (µc0, 0, . . . , 0)′, and M =
(
mi j

)
and B =

(
bi j
)

are square matrices of order
K with elements

mi j =



0, if 3 ≤ i ≤ K , 1 ≤ j ≤ i − 2,
(λ+ iµ)− iµc1, if 1 ≤ i ≤ K − 1, j = i,
(λ+ Kµ)− Kµ(1− c0), if i = j = K ,
−iµc0, if 2 ≤ i ≤ K , j = i − 1,
−iµc j−i+1, if 1 ≤ i ≤ K − 2, i + 1 ≤ j ≤ K − 1,

−iµ

(
1−

K−i∑
k=0

ck

)
, if 1 ≤ i ≤ K − 1, j = K .

bi j =


0, if 1 ≤ j < i ≤ K ,
λc j−i , if 1 ≤ i ≤ j ≤ K − 1,

λ

(
1− (1− δi K )

K−i−1∑
k=0

ck

)
, if 1 ≤ i ≤ K , j = K .

Proof. First of all, we notice that

x s
i (a) = (1− δa0)

λ

λ+ iµ

(
(1− δi K )

K−1∑
j=i

c j−i x s
j (a − 1)+

(
1− (1− δi K )

K−i−1∑
j=0

c j

)
x s

K (a − 1)

)

+
iµ

λ+ iµ

(
K−1∑

j=i−1

c j−i+1x s
j (a)+

(
1−

K−i∑
j=0

c j

)
x s

K (a)

)
, 1 ≤ i ≤ K , a ≥ 0. (15)

With the help of Kronecker’s function δab, we have written the above compact formula, but it is convenient to
derive the expression by thinking in three different cases: (a = 0), (a ≥ 1, 1 ≤ i < K ) and (a ≥ 1, i = K ). If the
primary arrival wins the competition to occupy the free server, then the index a decreases one unit. Once more, we
must update the orbit state by counting the number of arrivals during the service time in progress.

After rearrangement, the system (15) can be written in matrix form as claimed in (13) and (14). �

In the light of formulas (12) and (15) we can understand the need of considering a truncated model. Otherwise,
the sums would turn into infinite series. As a result, for each fixed a, we would have an infinite system of Eq. (15)
with a matrix M of level dependent upper Hessenberg type. Unfortunately, such a system of equations has no known
solution. Of course, it remains to specify how to choose the truncation threshold K . This discussion is postponed to
Section 7.

6. The number of blocked retrials

The number of blocked retrials taking place during a given service time depends on the arbitrary number of
blocked primary arrivals occurring during the service time in progress. Thus, it seems difficult, or even impossible,
to obtain the exact distribution of Rb. In this section, we propose two methods for the computation of the probability
mass function of Rb for the model with finite capacity K ≥ 1. The aim of the first approximation is to present a
tractable model for accurately representing the service times. To this end, we assume that service times follow a PH
distribution [13]. Phase type distributions form a versatile family of probability distributions. The exponential, Erlang
and hyperexponential distributions belong to this family. A remarkable property is that the set of PH distributions is
dense in the set of all probability distributions over [0,∞). Moreover, sums and mixtures of independent PH random
variables lead again PH distributions.

We assume a phase type representation (α,T) of order s, where the row vector α gives the initial phase distribution
and matrix T governs the infinitesimal phase rates. We also define the column vector t = −Te(s), where e(r)
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denotes the column vector of dimension r consisting of 1’s. For the use in the sequel, let e j (r), Ei j (r) and Ir denote,
respectively, the column vector of dimension r with 1 in the j-th position and 0 elsewhere, the matrix ei (r)e′j (r) and
an identity matrix of dimension r .

The state of the M /PH/1/K queue with retrials is described by the Markov chain Y (t) = (K (t), N (t)), where K (t)
is the phase of the service in progress. Note that K (t) = 0 indicates that the server is idle. The infinitesimal generator,
in partitioned form, is given by

Q =


A(0)0 A(+1)

0 0s+1 · · · 0s+1 0s+1

A(−1)
1 A(0)1 A(+1)

1 · · · 0s+1 0s+1
. . .

. . .
. . .

. . .
. . .

. . .

0s+1 0s+1 0s+1 · · · A(0)K−1 A(+1)
K−1

0s+1 0s+1 0s+1 · · · A(−1)
K A(0)K

 , (16)

where 0s+1 is a matrix of zeros of dimension s + 1, and the coefficient matrices appearing in (16) are given by

A(−1)
j =

(
0 jµα

0s×(s+1)

)
, 1 ≤ j ≤ K ,

A(0)j =

(
−(λ+ jµ) λα

t −(1− δ j K )λIs + T

)
, 0 ≤ j ≤ K ,

A(+1)
= A(+1)

j = λ (Is+1 − E11(s + 1)) , 0 ≤ j ≤ K − 1.

Firstly, we condition on the phase of the first arrival of the busy period. Then, we have

P{Rb
= r} =

s∑
k=1

αk yb
k0(r), r ≥ 0,

where yb
k j (r) is the probability of having r blocked retrials during the remaining busy period, given that the current

system state is (k, j), for 0 ≤ k ≤ s and 0 ≤ j ≤ K .
The unknowns yb

k j (r) satisfy the following.

Theorem 3. For each fixed r ≥ 0, the probabilities yb
k j (r) can be written in matrix form as

Pyb
r = fb

r , (17)

where yb
r =

(
yb

0(r), . . . , yb
K (r)

)′
and yb

j (r) =
(

yb
0 j (r), . . . , yb

s j (r)
)′

, for 0 ≤ j ≤ K , fb
0 = −e1((s + 1)(K + 1)) and

fb
r = −Ryb

r−1, for r ≥ 1, and

P = Q− R− F, (18)

R =
µ

λ
Diag(0, 1, . . . , K )⊗ A(+1),

F = E11((s + 1)(K + 1)) (Q+ E11((s + 1)(K + 1))) .

Proof. The matrix Q describes the infinitesimal dynamics of the M /PH/1/K queue with retrials including (i) the
blocked arrivals (see A(+1)), (ii) the successful retrials (see A(−1)

j ), (iii) the successful arrivals (see λα in A(0)j ), (iv)

the service completions (see t in A(0)j ), and (v) the phase transitions (see T in A(0)j ). The blocked retrials do not cause
a transition in the Markov chain, so their effect is not represented in the infinitesimal generator Q. However, given
the state (k, j) with 1 ≤ k ≤ s, the blocked retrials influence the dynamics of the probability yb

k j (r) leading to the
transition

(1− δr0)
jµ

λ− Tkk + jµ
yb

k j (r − 1).
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The effect of the above transition is reflected in the matrix R and in the vector fb
r . On the other hand, the effect of

subtracting the matrix F in (18) is to introduce yb
00(r) = δr0 as the first unknown of the system of equations. From

these observations, formula (17) is easily derived. �

To solve the finite block tridiagonal systems in (17), we recommend using a block forward-elimination–backward-
substitution algorithm [13]. However, other methods such as aggregate/disaggregate techniques and block
Gaussian–Seidel iteration can also be employed. For the sake of ease, in what follows we present Eq. (17) in the
particular cases where the service times follow hyperexponential and Erlang laws.

1. Hyperexponential service times
For the case of hyperexponential service times, that is, B(x) =

∑s
k=1 pk

(
1− e−νk x

)
, for x > 0, pk > 0, and∑s

k=1 pk = 1; the probabilities P{Rb
= r}, for r ≥ 0, can be calculated as

P{Rb
= r} =

s∑
k=1

pk yb
k0(r), r ≥ 0,

where the unknowns yb
k j (r) satisfy the following system:

yb
00(r) = δr0,

yb
0 j (r) =

λ

λ+ jµ

s∑
k=1

pk yb
k j (r)+

jµ

λ+ jµ

s∑
k=1

pk yb
k, j−1(r), 1 ≤ j ≤ K ,

yb
k j (r) =

λ

λ+ νk + jµ
yb

k, j+1(r)+
νk

λ+ νk + jµ
yb

0 j (r)+ (1− δr0)
jµ

λ+ νk + jµ
yb

k j (r − 1),

1 ≤ k ≤ s, 0 ≤ j ≤ K − 1,

yb
kK (r) =

νk

νk + Kµ
yb

0K (r)+ (1− δr0)
Kµ

νk + Kµ
yb

kK (r − 1), 1 ≤ k ≤ s.

2. Erlang service times
In this case, we have B(x) =

∫ x
0

νs

(s−1)! t
s−1e−νt dt , for x > 0 and s ∈ {1, 2, . . .}. Then, we have

P{Rb
= r} = yb

10(r), r ≥ 0,

and

yb
00(r) = δr0,

yb
0 j (r) =

λ

λ+ jµ
yb

1 j (r)+
jµ

λ+ jµ
yb

1, j−1(r), 1 ≤ j ≤ K ,

yb
k j (r) =

λ

λ+ ν + jµ
yb

k, j+1(r)+
ν

λ+ ν + jµ
yb

k+1, j (r)+ (1− δr0)
jµ

λ+ ν + jµ
yb

k j (r − 1),

1 ≤ k ≤ s − 1, 0 ≤ j ≤ K − 1,

yb
kK (r) =

ν

ν + Kµ
yb

k+1,K (r)+ (1− δr0)
Kµ

ν + Kµ
yb

kK (r − 1), 1 ≤ k ≤ s − 1,

yb
s j (r) =

λ

λ+ ν + jµ
yb

s, j+1(r)+
ν

λ+ ν + jµ
yb

0 j (r)+ (1− δr0)
jµ

λ+ ν + jµ
yb

s j (r − 1),

0 ≤ j ≤ K − 1,

yb
sK (r) =

ν

ν + Kµ
yb

0K (r)+ (1− δr0)
Kµ

ν + Kµ
yb

sK (r − 1).

As we mentioned earlier, the PH distribution provides a versatile representation of the service times which can be
satisfactory for practical purposes. However, we may still wish to deal with any arbitrary service time, not necessarily
of PH type. This can be done with the help of the following approximating approach.
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We condition on the number of arrivals and retrials occurring during the first service time of the busy period. This
gives

P{Rb
= r} = δr0c0,0

0 + (1− δK 1)

K−1∑
i=1

r∑
k=0

ci,k
0 xb

i (r − k)+
r∑

k=0

d K ,k
0 xb

K (r − k), r ≥ 0, (19)

where c j,k
i is the probability that j primary arrivals and k retrials occur during a service time, given that immediately

after the beginning of the service time the orbit size is i , for 0 ≤ i ≤ K , j ≥ 0 and k ≥ 0. Then, the accumulative
probabilities d K−i,k

i are defined by d K−i,k
i =

∑
∞

m=K−i cm,k
i , for 0 ≤ i ≤ K and k ≥ 0. The quantities xb

i (r) denote
the probability of having r blocked retrials during the remaining busy period, given that a service time has been
completed leaving i customers in orbit, for 0 ≤ i ≤ K and r ≥ 0. For i = 0, we have xb

0 (r) = δr0.

The dynamics of the probabilities xb
i (r) is summarized in the following result.

Theorem 4. For each fixed r ≥ 0, the probabilities xb
i (r) satisfy the following block tridiagonal system:

N0xb
0 = bb

0, (20)

N0xb
r =

r∑
m=1

Nmxb
r−m, r ≥ 1, (21)

where xb
r =

(
xb

1 (r), . . . , xb
K (r)

)′
, for r ≥ 0,bb

0 =

(
µĉ 0,0

0 , 0, . . . , 0
)′

, and Nm =

(
nm

i j

)
are square matrices of order

K with elements

n0
i j =



0, if 3 ≤ i ≤ K , 1 ≤ j ≤ i − 2,

(λ+ iµ)− λ̂c0,0
i − iµĉ1,0

i−1, if 1 ≤ i ≤ K − 1, j = i,

(λ+ Kµ)− λd̂0,0
K − Kµd̂1,0

K−1, if i = j = K ,

−iµĉ0,0
i−1, if 2 ≤ i ≤ K , j = i − 1,

−λ̂c j−i,0
i − iµĉ j−i+1,0

i−1 , if 1 ≤ i ≤ K − 2, i + 1 ≤ j ≤ K − 1,

−λd̂ K−i,0
i − iµd̂ K−i+1,0

i−1 , if 1 ≤ i ≤ K − 1, j = K ,

and, for 1 ≤ m ≤ r,

nm
i j =



0, if 3 ≤ i ≤ K , 1 ≤ j ≤ i − 2,

λ̂c0,m
i + iµĉ1,m

i−1, if 1 ≤ i ≤ K − 1, j = i,

λd̂0,m
K + Kµd̂1,m

K−1, if i = j = K ,

iµĉ0,m
i−1, if 2 ≤ i ≤ K , j = i − 1,

λ̂c j−i,m
i + iµĉ j−i+1,m

i−1 , if 1 ≤ i ≤ K − 2, i + 1 ≤ j ≤ K − 1,

λd̂ K−i,m
i + iµd̂ K−i+1,m

i−1 , if 1 ≤ i ≤ K − 1, j = K .

The estimations ĉ j,k
i and d̂ K−i,k

i will be specified in the sequel.

Proof. Conditioning on the identity of the customer who occupies the server and counting the number of primary
arrivals and retrials taking place during the service in progress, we find that

xb
i (r) =

λ

λ+ iµ

r∑
k=0

(
(1− δi K )

K−1∑
j=i

c j−i,k
i xb

j (r − k)+ d K−i,k
i xb

K (r − k)

)

+
iµ

λ+ iµ

r∑
k=0

(
K−1∑

j=i−1

c j−i+1,k
i−1 xb

j (r − k)+ d K−i+1,k
i−1 xb

K (r − k)

)
, 1 ≤ i ≤ K , r ≥ 0. (22)
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To specify the auxiliary quantities c j,k
i and d K−i,k

i , suppose that the length of the service time is x and j primary
customers arrive at epochs x1, . . . , x j . This implies that they may perform retrials during the remaining service time of
length x−x1, . . . , x−x j , respectively. It seems very hard to manage these multidimensional constraints. Alternatively,
we will assume that the j customers arrive at the mean point x/2. This simple approximating assumption affects on
average only ρ < 1 customers per service. As a result of this reallocation, the constants c j,k

i are approximated by

ĉ j,k
i =

∫
∞

0
e−λx (λx) j

j !

k∑
m=0

e−iµx (iµx)m

m!
e−

jµx
2
(

jµx
2 )k−m

(k − m)!
dB(x).

Now, it is easy to derive that

ĉ j,k
i =

λ j
(

iµ+ jµ
2

)k

j !k!

∫
∞

0
e
−

(
λ+iµ+ jµ

2

)
x
x j+kdB(x), (23)

d̂ K−i,k
i =

(
(K+i)µ

2

)k

k!

(∫
∞

0
e−

(K+i)µx
2 xkdB(x)

− (1− δi K )

K−i−1∑
j=0

λ j

j !

∫
∞

0
e
−

(
λ+

(K+i)µ
2

)
x
x j+kdB(x)

)
. (24)

By expressing (22) in matrix form, we obtain (20) and (21). �

Explicit expressions for approximated quantities (23) and (24) can be given for the most usual service time
distributions. For example, in the case of exponential service times (i.e., β1 = ν

−1) formula (23) yields

ĉ j,k
i =

(
j + k

j

) λ jν
(

iµ+ jµ
2

)k

(
λ+ ν + iµ+ jµ

2

) j+k+1 .

The combination of formula (19) and the iterative solution of the systems (20) and (21) complete our second
approach for the computation of the probabilities P{Rb

= r}. For a comparison between the two approximating
methods, we refer the reader to Tables 3 and 4 in Section 7.

7. Numerical results

In order to evaluate the performance of the descriptors under study, we next present some numerical experiments.
In Table 1, we display the expected value E[Rs

] for different choices of the service time distribution. To this end,
we consider Erlang-3 (E3), exponential (M) and hyperexponential (H2) service times. The coefficient of variation
of the hyperexponential law is 1.25 whereas β1 has been normalized to be 1 in all cases. The traffic intensity
ρ and the retrial rate µ take values 0.2, 0.4, 0.6 and 0.8, and 0.05, 0.5, 2.5, 25.0 and 100.0, respectively. Each
cell is associated with a pair (ρ, µ) and gives the expectation for the three service time laws. An examination of
the table reveals that E[Rs

] is an increasing function of ρ but it decreases as function of µ. We also notice that
E[Rs(H2)] < E[Rs(M)] < E[Rs(E3)].

We have produced the parallel tables (not reported here) for the descriptors E[As
] and E[Rb

]. The behavior of
E[As
] is similar to that shown in Table 1 for E[Rs

]. However, the analysis of E[Rb
] is more complicated. The

expectation E[Rb
] is also increasing with ρ but it exhibits a minimum as function of µ. On the other hand, the

relationships among the expectations E[Rb(H2)], E[Rb(M)] and E[Rb(E3)] now depend on the choice of the pair
(ρ, µ). The expected values have been computed from formulas (4)–(8), where we use a trapezoidal rule (subroutine
TRAPZD in [17, Chapter 4]) to numerically evaluate the integral arising in formula (4).

In Table 2, we summarize some of the main characteristics of As for the model with H2 service times and truncation
threshold K = 150. The existing literature shows the existence of different criteria for determining the orbit capacity
K . Since the approaches in this paper are oriented to the direct computation of the mass probability function, it seems
consistent to use a point criterion in order to determine the value of K . For K = 150, the maximum norm defined
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Table 1
The value of E[Rs

] as a function of the service time law

ρ µ 0.05 0.5 2.5 25.0 100.0

0.2 E3 0.62980 0.27419 0.25466 0.25046 0.25011
M 0.61035 0.27334 0.25450 0.25044 0.25011
H2 0.59722 0.27274 0.25439 0.25043 0.25010

0.4 E3 53.9622 1.03449 0.72790 0.67255 0.66813
M 39.6916 1.00320 0.72344 0.67213 0.66803
H2 33.0976 0.98513 0.72081 0.67189 0.66796

0.6 E3 346 968.2 5.15835 1.92032 1.53751 1.50929
M 89406.9 4.50421 1.86894 1.53335 1.50826
H2 44224.8 4.19806 1.84281 1.53119 1.50773

0.8 E3 7.9274× 1013 85.4608 7.37906 4.25259 4.06170
M 6.1035× 1011 52.5305 6.69468 4.21140 4.05183
H2 6.3259× 1010 41.8761 6.39795 4.19235 4.04724

Table 2
The main characteristics of As

ρ µ 0.05 0.5 2.5 25.0 100.0

0.2 P{As
= 0} 0.86312 0.94290 0.98422 0.99827 0.99956

P{As
≤ 100} 0.99998 0.99999 0.99999 0.99999 0.99999

E[As
] 1.38890 0.09098 0.01756 0.00174 0.00043

0.4 P{As
= 0} 0.74505 0.83760 0.93888 0.99240 0.99806

P{As
≤ 100} 0.86801 0.99999 0.99999 0.99999 0.99999

E[As
] 48.6464 0.47770 0.08122 0.00784 0.00195

0.6 P{As
= 0} 0.65750 0.73599 0.86983 0.98055 0.99492

P{As
≤ 100} 0.68505 0.99999 0.99999 0.99999 0.99999

E[As
] 29 482.2 1.79870 0.22854 0.02079 0.00515

0.8 P{As
= 0} 0.58965 0.65154 0.78725 0.95836 0.98862

P{As
≤ 100} 0.60272 0.98334 0.99999 0.99999 0.99999

E[As
] 1.5814× 1010 9.46903 0.59948 0.04808 0.01181

by P(150) = max0≤a≤100 |P{As(149) = a} −P{As(150) = a}| is less than 10−14, where P{As(K ) = a} indicates
that the corresponding probability is calculated from (12) after solving the system (13) and (14) with orbit capacity
K . In fact, the accuracy 10−14 in Table 2 can be reached for lower values of K but we take K = 150 because this
threshold guarantees that all the experiments throughout this section preserve the accuracy 10−14. Firstly, we observe
that the initial probability P{As

= 0} decreases with ρ and increases with µ. The value of P{As
≤ 100} shows that

the tail of the distribution becomes heavier as long as ρ increases and/or µ decreases. With respect to the influence
of the service time distribution, we have observed that P{As(E3) = 0} < P{As(M) = 0} < P{As(H2) = 0} and
P{As(E3) ≤ 100} < P{As(M) ≤ 100} < P{As(H2) ≤ 100}.

For the descriptor Rs , we may comment that P{Rs
= 0} = β(λ). Moreover, our numerical experiments show

that P{Rs(E3) = 0} < P{Rs(M) = 0} < P{Rs(H2) = 0}. As long as µ increases, the mass probability function
of Rb may have two modes. One of them is always attached at the initial point r = 0. In contrast, the probabilities
P{Rs

= r} and P{As
= a} are always decreasing functions of r and a, respectively.

It should be noticed that as long as ρ increases and/or µ decreases the distribution of the descriptors under study
becomes more sparse. This fact is corroborated in Tables 1 and 2 for the entry (ρ, µ) = (0.8, 0.05). For this case,
we observe that P{As

≤ 100} = 0.60272 which means that the tail of the distribution has a significant weight. We
also notice that the expectations take extremely large values. The dispersion of the distribution is independent of the
proposed truncated approach. In fact, the dispersion at high levels of congestion is an inherent characteristic of our
descriptors. It can be explained because the descriptors are referred to a busy period which becomes stochastically
large as long as the congestion increases.
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Table 3

Comparing the approximations of Rb

r F
E3
Rb (r) F̂

E3
Rb (r) F

M
Rb (r) F̂ M

Rb (r) F
H2
Rb (r) F̂

H2
Rb (r)

0 0.49398 0.49205 0.55797 0.55571 0.58403 0.58160
1 0.49591 0.49207 0.56035 0.55603 0.58663 0.58199
2 0.49786 0.49210 0.56271 0.55649 0.58919 0.58257
3 0.49981 0.49216 0.56503 0.55708 0.59170 0.58330
4 0.50176 0.49226 0.56732 0.55780 0.59418 0.58417
5 0.50373 0.49241 0.56958 0.55863 0.59662 0.58518
6 0.50570 0.49261 0.57181 0.55956 0.59902 0.58631
7 0.50767 0.49288 0.57402 0.56059 0.60138 0.58755
8 0.50965 0.49323 0.57619 0.56172 0.60371 0.58889
9 0.51163 0.49366 0.57834 0.56292 0.60600 0.59032

10 0.51361 0.49418 0.58046 0.56420 0.60825 0.59183

≤100 0.65630 0.66124 0.69733 0.69691 0.72417 0.72386

Table 4

Comparing the expectations of Rb

E[Rb
] Ê[Rb

] E[Rb
]

E3 1370.148958326 1370.148958321 1370.148957385
M 2042.124838966 2042.124838965 2042.124838966
H2 2608.955483322 2608.955483324 2608.955483418

We now focus on the distribution function of Rb. The approximation based on the direct equations for the
M /PH/1/K retrial queue is denoted by F Rb (r) (see Theorem 3), whereas F̂Rb (r) denotes the approach based on
reallocation of the blocked primary customers (see Theorem 4).

For small values of µ, the service time tends to expire before the repeated attempt takes place. As a result, the
reallocation of customers has no perturbing effect on the system dynamics. Thus, we may expect high accuracy for
small retrial rates. In Table 3, we show that F̂Rb (r) gives also a good approximation for higher values of µ. More
concretely, we choose (ρ, µ) = (0.8, 100.0) and K = 150. Then, the entries in the table show that F̂Rb (r) is close
enough to F Rb (r) (i.e., the exact distribution of the truncated model) for E3, M and H2 service times.

The above comments give some credit to our approximating assumptions (i.e., truncation of the orbit and
reallocation of the blocked primary customers). In addition, the efficiency of the approximations can be measured
in terms of the convergence of the approximate expected values to the true expectations given by formulas (4)–(8).
In this sense, in Table 4 we supplement the results in Table 3 by comparing the corresponding expectations E[Rb

]

and Ê[Rb
], for K = 150, versus the true value E[Rb

]. The equations for computing E[Rb
] (respectively Ê[Rb

]) can
be easily derived by multiplying yb

k j (r) (respectively P{Rb
= r} and xb

i (r)) by r and adding from r = 0 to∞. The
conclusion is that both approximations are very accurate for the three service time distributions.

Our next objective is to choose optimally the retrial rate with respect to a specified objective function. Several
cost/reward criteria can be formulated. One option is to maximize the objective function:

f (µ) = Br E[Rs
] + Ba E[As

] + Cr E[Rb
] + Ca E[Ab

]. (25)

The contributions of the different terms reflect the influences of the four descriptors under study. The accompanying
coefficients measure the economic incidences of the profit/cost associated with each type of event. For the E3 service
times and (Br , Ba,Cr ,Ca) = (1.0, 3.0,−10.0,−3.0), in Table 5 we display the value of the cost function (25). For
all choices of ρ we obtain an optimal value µ∗, which has been indicated in bold in Table 5.

8. Conclusion

We have developed a computational approach for the computation of the distribution of the successful and blocked
primary arrivals and repeated attempts in the M /G/1 retrial queue. This analysis of the customer’s behavior provides



26 J. Amador, J.R. Artalejo / Journal of Computational and Applied Mathematics 223 (2009) 15–26

Table 5
Optimal value of µ

µ 0.05 0.5 2.5 25.0 100.0

ρ = 0.2 1.4611 −2.0860 −6.3955 −53.3011 −209.5537
ρ = 0.4 −257.8215 −13.0575 −26.2523 −192.6219 −748.1537
ρ = 0.6 −5.4936× 106

−123.3615 −111.8185 −666.6944 −2 541.1265
ρ = 0.8 −3.4021× 1015

−4952.6061 −922.3086 −3722.2496 −13 709.5667

qualitative insight in the characteristics of the retrial group. The methodology can be extended to more general queuing
models combining retrials and other queuing phenomena: unreliable queues [8,14,18–20], discrete-time models [8,
20], etc. The consideration of the new descriptors in a time dependent context [16] could be the subject matter of
a forthcoming study. Such a study will allow us to compute our descriptors in any time interval (0, t] rather than
in a busy period. For a moderate time horizon t , this alternative approach should reduce the dispersion observed in
Section 7 for the case (ρ, µ) = (0.8, 0.05).
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