
Aircraft and Gate Scheduling Optimization at Airports

H. Ding1, A. Lim2, B. Rodrigues3 and Y. Zhu2

1 Department of CS, National University of Singapore
3 Science Drive 2, Singapore
dinghaon@comp.nus.edu.sg

2 Department of IEEM, The Hong Kong University of Science and Technology
Clear Water Bay, Hong Kong

{iealim,zhuyi}@ust.hk

3 School of Business, Singapore Management University
469 Bukit Timah Road, Singapore

br@smu.edu.sg

Abstract

In this paper, we consider the over-constrained Air-
port Gate Assignment Problem where the number of
flights exceeds the number of gates available, and where
the objectives are to minimize the number of ungated
flights and the total walking distances or connection
times. We design a greedy algorithm and use a Tabu
Search meta-heuristic to solve the problem. The greedy
algorithm minimizes ungated flights while providing ini-
tial feasible solutions while we devise a new neighbor-
hood search technique, the Interval Exchange Move,
which allows us flexibility in seeking good solutions, es-
pecially in case when flight schedules are dense in time.
Experiments conducted give good results.

1. Introduction

Modern airport design incorporates terminal features
that facilitate good passenger handling. In particular, ter-
minal topology from check-in counters to embarkation
or disembarkation gates attempt to provide for smooth
and optimal flow of passengers (Figure 1). The distance
a passenger has to walk in any airport to reach vari-
ous key areas, including departure gates, baggage belts
and connecting flights provide for an important perfor-
mance measure for the quality of any airport. While cer-
tain walking distances are fixed, others are dynamic. In
particular, the distances traversed by passengers from

check-in counters to gates and from gate to gate, in the
case of transfer or connecting passengers, change ac-
cording to how scheduled flights are assigned to gates.
This allows for the ground handling agents and airlines,
together with airport authorities, to dynamically assign
airport gates to scheduled flights so as to minimize walk-
ing distances while, consequently, minimizing connec-
tion times. Which flight-to-gate assignment policy to be
used so as to achieve such minimum times can be de-
rived at the start of each planning day based on pub-
lished flight schedules and booked passenger loads. The
Airport Gate Assignment Problem (AGAP) seeks to find
feasible flight-to-gate assignments so that total passen-
ger connection times, as can be proxied by walking dis-
tances, is minimized. Planning horizons would typically
be time intervals that include so-called airport peak pe-
riods since if proper gate assignments are done during
such periods, gate shortages will hardly occur outside
these periods. Distances that are taken into account are
those from check-in to gates in the case of embarking or
originating passengers, from gates to baggage claim ar-
eas (check-out) in the case of disembarking or destina-
tion passengers and from gate to gate in the case of trans-
fer or connecting passengers. In the over-constrained
case, where the number of aircraft exceed the number of
available gates, we include the distance from the apron
or tarmac area to the terminal for aircraft assigned to
these areas.

This paper is organized as follows. In the next sec-
tion, we provide a short summary of previous work done

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 1

Apron

T
ransfer

B
uses

Check In/Check Out
Point

Terminal

G
ate

1 G
at

e
2

G
ate

3

G
at

e
4

G
ate

5 G
at

e
6

G
ate

7 G
at

e
8

G
ate

9

G
at

e
10

Figure 1. Airport layout and passenger
flows

on this and related problems. In Section 3, we give a ba-
sic formulation of the AGAP as we model it. In Section
4, we discuss a basic greedy algorithm that minimizes
the number of flights not assigned to gates and in Sec-
tion 5 we give a Tabu Search Heuristic for the AGAP.
In Section 6, computational results and comparisons are
given and in the final Section 7, we summarize our ap-
proach and findings.

2. Previous work

One of the first attempts to use quantitative means
to minimize intra-terminal travel into a design process
was given by Braaksma and Shortreed [2]. The assign-
ment of aircraft to gates, which minimize travel dis-
tances, is an easily motivated and understood problem
but a difficult one to solve. The total passenger walking
distance is based on passenger embarkation and disem-
barkation volumes, transfer passenger volumes, gate-to-
gate distances, check-in-to-gate distances and aircraft-
to-gate assignments. In the gate assignment problem,
the cost associated with the placing of an aircraft at a
gate depends on the distances from key facilities as well
as the relations between these facilities. The basic gate
assignment problem is a quadratic assignment problem
and shown to be NP-hard in Obata [7]. Babic et al. [1]
formulated the gate assignment problem as a linear 0-1
IP. A branch-and-bound algorithm is used to find the op-
timal solution where transfer passengers are not consid-
ered. Network models [9] and Simulation models [3, 4]
were also proposed to formulate the problem.

Since the gate assignment problem is NP-Hard, var-
ious heuristic approaches have been suggested by re-
searchers,e.g. Haghani and Chen [6]. proposed a heuris-
tic that assigns successive flights parking at the same
gate when there is no overlapping. In the case where
there is overlapping, flights are assigned based on short-
est walking distances coefficients. More recently, Xu
and Bailey [8] provide a Tabu Search meta-heuristic to
solve the problem. The algorithm exploits the special
properties of different types of neighborhood moves,
and creates highly effective candidate list strategies.
Although much work has been centered on the gate
assignment problem with the objective of minimizing
distance costs (or variants of this), to the best of our
knowledge, no previous work has considered the over-
constrained gate assignment problem. In particular, no
previous work has addressed both the objectives of min-
imizing the number of ungated aircraft while minimiz-
ing total walking distances.

3. Problem definition

In this paper, we discuss the over-constrained AGAP
which attempts to schedule a set of flights during any
given planning day and assign them to different gates
so as to minimize the number of flights that are not as-
signed to any gate; additionally, we seek to minimize
walking distances between gates and hence minimize
connection times. In our model, we will not stipulate
secondary constraints which account for boarding times
and other buffers between arrival and departure times
since these are easily dealt with by extending flight ar-
rival and departure durations. We give here a definition
of the over-constrained AGAP, where the following no-
tations are used:

N : set of flights arriving at (and/or departing from)
the airport;

M : set of gates available at the airport;
n: total number of flights, i.e., |N |, where |N | de-

notes the cardinality of N ;
m: total number of gates, i.e., |M |.
ai: arrival time of flight i;
di: departure time of flight i;
wk,l: walking distance for passengers from gate k to

gate l;
fi,j : number of passengers transferring from flight i

to flight j;
Additionally, we will make use of two dummy gates.

Gate 0 represents the entrance or exit of the airport, and
gate m+1 represents the apron or tarmac where flights
arrive at when no gates are available. Hence, wk,0 rep-
resents the walking distance between gate k and the air-
port entrance or exit, and f0,i represents the number of

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 2

originating departure passengers of flight i; fi,0 repre-
sents number of the disembarking arrival passengers of
flight i. So wm+1,k represents the walking distance be-
tween the apron and gate k (usually much larger than the
distance among different gates).

Letting the binary variable yi,k = 1 denote that flight
i is assigned to gate k (0 < k ≤ m + 1), yi,k = 0 other-
wise. Then, the following constraint must be satisfied:

∀(i, j) yi,k = yj,k = 1(k �= m + 1) implies ai > dj

or aj > di. (*)
This condition disallows any two flight to be sched-

uled to the same gate simultaneously (except if they are
scheduled to the apron or tarmac).

Our objectives are to minimize the number of
flights assigned to the apron, and the total walking dis-
tance, which consists of three components: the walking
distance of transfer passengers, disembarking ar-
rival passengers and originating departure passengers.
The formulation of the AGAP can be expressed as fol-
lows.

Minimize
∑n

i=1 yi,m+1

Minimize
∑n

i=1

∑n
j=1

∑m+1
k=1

∑m+1
l=1 fi,jwk,lyi,kyj,l +∑n

i=1 f0,iw0,i +
∑n

i=1 fi,0wi,0

subject to:

m+1∑

k=1

yi,k = 1(∀i, 1 ≤ i ≤ n) (1)

ai < di(∀i, 1 ≤ i ≤ n) (2)

yi,kyj,k(dj−ai)(di−aj) ≤ 0(∀i, j, 1 ≤ i, j ≤ n, k �= m+1)
(3)

yi,k ∈ {0, 1}(∀i, 1 ≤ i ≤ n,∀k, 1 ≤ k ≤ m + 1) (4)

The constraint (1) ensures that every flight must be
assigned to one and only one gate or assigned to the
apron. The constraint (2) specifies that each flight’s de-
parture time is later than its arrival time. The constraint
(3) says that two flights’ schedule cannot overlap if they
are assigned to the same gate. Actually, the last con-
straint can be expressed in an alternative form as con-
dition (*) given above.

4. A greedy algorithm for minimizing the
number of flights assigned to the apron

To solve the over-constrained AGAP, a first step is to
minimize the number of flights that need be assigned to
the apron. The minimal number of flights can be calcu-
lated by the following greedy algorithm.

The basic idea of the greedy algorithm is as follows.
After sorting all the flights by the departure time, flights

Gate 1

Gate 2

Gate 3

Gate 4

Flight 1

Flight 2

Flight 2

Flight 3 Flight 4

Flight 5

Flight 6

Flight 7

Flight 8

Figure 2. A greedy algorithm for minimiz-
ing the number of flights assigned to the
apron

are assigned to the gates one by one. Any flight will be
assigned to an available gate with latest departure time.
If there are no gates available, the flight will be assigned
to the apron. This is illustrated in Figure 2.

The basic details of the algorithm are as follows.

1. Sort the flights according to the departure time
di(1 ≤ i ≤ n). Let gk(1 ≤ k ≤ m) represents the
earliest available time (actually the departure time
of last flight) of gate k. Set gk=-1 for all k.

2. For each flight i

(a) Find gate k such that gk < ai and gk is maxi-
mized;

(b) If such k exists, assign flight i to gate k, up-
date gk=di;

(c) If k does not exist, assign flight i to the apron.

3. Output the result.

Proof of the correctness of the greedy algorithm: By
induction, assume we have found the optimal solution
after scheduling flight i by the greedy algorithm. Now
by this, we will assign flight f to gate k. But the opti-
mal solution is to drop flight f and assign f ′(f ′ > f) to
gate k′. Hence we can always replace f ′ by f to make
our greedy solution no worse than the optimal solution.

There are two cases we should consider.

1. If k = k′, since we sort the flights by departure
time, df ≤ df ′ . We have gk ≤ g′k. As we consid-
ered the earliest available time of the gates, we find
the greedy solution is better or at least equal to the
optimal solution.

2. If k �= k′, we find that gk ≤ g′k′ , and gk′ ≤ g′k,
since we choose the maximum gk in the greedy so-
lution. Figure 3 illustrates this.

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 3

Figure 3. The correctness of the greedy al-
gorithm

Hence the greedy method yields the optimal solution.
The greedy solution not only gives us the optimal

number of flights that can be scheduled in gates, but also
helps us to get a feasible initial solution, which will be
used in the heuristic algorithm we discuss next.

5. Tabu search heuristic

5.1. analysis of the current approach

In the only paper on the AGAP or its variants we have
found which has used meta-heuristics, Xu and Bailey
[8] have proposed a Tabu Search (TS) heuristic to solve
the AGAP. In their work, three neighborhood moves,
namely Insert Move, Exchange I Move and Exchange II
Move were adopted.

There are, however, some shortcomings in the ap-
proach given by Xu and Bailey, which include the fol-
lowing:

1. The method cannot handle over-constrained situa-
tions when there is a need assign some flights to the
apron;

2. The method chooses an initial solution by a ran-
dom assignment, therefore no feasible initial solu-
tion is guaranteed, though feasible solutions exist;

3. The two exchange moves are inflexible, especially
Exchange II Moves; consequently, it is not easy to
find good quality moves when flights schedules are
dense in time.

As we can easily verify, the first two shortcomings (1),
(2), can be directly resolved by the greedy algorithm

Gate A

Gate B

Flight 2

Flight A1 Flight A2 Flight A3

Flight B1 Flight B2

Figure 4. The situation where the simple
exchange methods fails

provided here. The last, (3), can be tackled by an In-
terval Exchange Move, which we will present in the fol-
lowing section.

5.2. New neighborhood search methods

We will use a new neighborhood search approach that
consists of three moves, which are:

• The Insert Move: Move a single flight to a gate
other than the one it currently assigns. This move
is the same as the original insert move.

• The Interval Exchange Move: Exchange two flight
intervals in the current assignment. A flight interval
consists of one or more consecutive flights in one
gate.

• The Apron Exchange Move: Exchange one flight
which has been assigned to the apron with a flight
that is assigned to a gate currently.

The Insert Move is trivial and has been discussed in
[8]. We now discuss the Interval Exchange Move and
Apron Exchange Move in greater detail.

5.2.1. The interval exchange move As men-
tioned, two exchange moves were proposed in [8],
which are single flights exchange move and consecu-
tive flight pairs exchange move. However, as we ob-
served, these neighborhood moves are not very flexible
and sometimes impossible to use to get to feasible so-
lutions. As an example, consider the case shown in
Figure 4.

We can see that no single flights exchange or con-
secutive flight pairs exchange can provide feasible solu-
tions. However, we note that the three flights in gate A
can be exchanged with the two flights in gate B. This
leads us to define the following move which is a gen-
eralized form of the two original exchange moves. We
exchange the flights whose arrival and departure time
are between flight a and b (inclusive) in gate k with
the flights whose arrival and departure time are between
flight c and d in gate l. This is expressed by (a,b,k) ↔

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 4

Figure 5. Interval exchange move

Figure 6. The four time points of an inter-
val

(c,d,l) and illustrated in Figure 5. As flights between a,b
and c,d are represented by two intervals on the axis, this
method is called Interval Exchange Move.

Now, the essential reason for the Interval Exchange
Move is to find two compatible intervals, which will al-
low us to get a feasible solution. In order to get this, “in-
terval” data should contain four time points: the earliest
available time (t1), the start time (t2), the end time (t3)
and the latest available time (t4). Figure 6 illustrates the
meaning of these four time points.

Further to this, we define two functions on intervals.
ExtendLeft() extends the current interval by adding the
flight which is just left to it, and ExtendRight() extends
the current interval by adding the flight which is just
right to it. The functions return Boolean values to in-
dicate whether the operations are successful. For exam-
ple, the ExtendLeft() operation will fail if the current in-
terval has included the first flight. Additionally, Previ-
ous(i) returns the flight just arranged before flight i in
the same gate, Next(i) returns the flight just arranged af-
ter flight i.

With these, we can now state an algorithm for finding
compatible intervals in Algorithm 1.

It is clear that after finding two compatible intervals,
exchange and update can be done easily.

We state here some of the advantages of the Interval
Exchange Move

Algorithm 1 finding compatible intervals
1: Select two flights a,b in different gates, where a,b

have overlap time
2: Initialize interval A ← a, interval B ← b;
3: A.t1 ← Previous(a).departure;
4: A.t2 ← a.arrival;
5: A.t3 ← a.departure;
6: A.t4 ← Next(a).arrival;
7: B.t1 ← Previous(b).departure;
8: B.t2 ← b.arrival;
9: B.t3 ← b.departure;

10: B.t4 ← Next(b).arrival;
11: success ← true;
12: while A and B are incompatible and success is true

do
13: if (A.t2 < B.t1 and !ExtendLeft(B))
14: success ← false;
15: if (B.t2 < A.t1 and !ExtendLeft(A))
16: success ← false;
17: if (A.t3 > B.t4 and !ExtendRight(B))
18: success ← false;
19: if (B.t3 > A.t4 and !ExtendRight(A))
20: success ← false;
21: end while
22: if (success)
23: exchange interval A and B;
24: else output “Exchange Failed”;

• It is the generalized form of Exchange I Move
and Exchange II Move and can replace these two
moves.

• If we say Exchange I Move is “1-1 Move” and Ex-
change II Move is “2-2 Move”, then Interval Ex-
change Move is a “Many-Many Move”, which al-
lows moves to be more variable, and good quality
solutions easier to find;

• The Interval Exchange Move can be applied to
more diverse neighborhoods such as found in re-
alistic situations (see also in Figure 4).

5.2.2. The apron exchange move The Apron Ex-
change Move is used to deal with the flights that
are assigned to the apron. In each move, we ex-
change one flight that is assigned to the apron currently
with a flight that has been assigned to a gate. As the min-
imal number of flights out of the gates has been deter-
mined by the greedy algorithm, we cannot perform a
“many-many” exchange, so we can only effect a sin-
gle flight exchange.

5.3. Tabu short-term memory

Tabu Search memory plays an important role in the
search process. It forbids the solution attribute changes

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 5

Figure 7. The layout of the airport in test
data

recorded in the short-term memory to be reused. How
long a restriction is in effect depends on the tabu tenure
parameter, which identifies the number of iterations a
particular restriction remains in force [5].

In our AGAP problem, since there are three types of
neighborhood search moves, the tabu short-term mem-
ory can be implemented as follows (where iter denotes
the current iteration number):

1. Insert Move: denoted as (i, k) → (i, l),
tabu((i, k) → (i, l)) = iter + tabu tenure
— to prevent the move (i, l) → (i, k);

2. Interval Exchange Move: denoted as
(a, b, k) ↔ (c, d, l), tabu((a, b, k) ↔ (c, d, l)) =
iter + tabu tenure — to prevent the move
(a, b, l) ↔ (c, d, k);

3. Apron Exchange Move: denoted as (a, k) ↔
(b, OUT), tabu((a, k) ↔ (b,OUT)) =
iter + tabu tenure — to prevent the move
(a,OUT) ↔ (b, k).

6. Experimental results

We conducted elaborate experiments to compare our
TS heuristic with other such approaches, specifically,
with results from the approach of [8]. In the latter, there
is one objective to minimise cost, whereas we are in-
terested, additionally, in minimising the number of dis-
placed aircraft. Moreover, their model incorporates ad-
ditional constraints such as boarding time and other
time buffers. We realized, however, that these latter con-
straints can be easily dealt with by extending flight du-
rations. More importantly, however, Xu and Bailey fo-
cus on TS heuristics for application to the AGAP and it
is this approach that we make comparisons with here.

In this section, we first explain how the test data is
generated and then provide details of results and analy-
sis.

6.1. Test data generation

We take a representative layout of an airport to have
two parallel sets of terminals, where gates are symmet-
rically located in the two terminals shown in Figure 7.
We set the distance between the check-in / check-out
point to gate 1(and gate 2) to be 5 units; the distance be-
tween two adjacent gates in one terminal (e.g., gate 1 and
gate 3) to be 1 unit; and the distance between two par-
allel gates in different terminals (e.g., gate 1 and gate 2)
to be 3 units. To simplify the problem, we assume that
the passengers can only walk “horizontally” or “verti-
cally”, i.e., if one passenger wants to transfer from gate
3 to gate 2, his walking distance is 1+3=4 units (The dis-
tance measure is known as Manhatten Distance).

The arrival time ai of flight i is randomly generated
in the interval [10i, 10i+7], and the departure time di is
generated in the interval [ai + 60, ai + 69].

we consider the following realistic scenarios to gen-
erate fi,j , the number of transferring passengers be-
tween flight i and flight j,

• The total number of passengers in a flight is usually
within a certain interval, say [300,400];

• There are rarely very small numbers of passengers
transferring from one flight to another flight; it is
usually in larger numbers as in “group” transfers;

• The number of transfer passengers will increase if
flight schedules are close, but not too close.

Furthermore, for each flight i, the number of disem-
barking passengers whose destination is this airport fi,0

and the number of embarking passengers whose origin
is this airport f0,i are both generated within the inter-
val [1,100].

6.2. Parameters settings

There are a few parameters which should be set for
our TS algorithm which we call the Interval Exchange
TS (ITS) and the TS algorithm in [8] which we call
Xu and Bailey’s TS (XTS). In view for comparison,
most parameters and moves in the two algorithms are
the same as described in [8], except for the following:

• The iteration number in XTS is 40m−500, the min-
imal iteration number is 500;

• The iteration number in ITS is 300m − 400, the
minimal iteration number is 2000, as ITS runs
faster than XTS;

• The Exchange I Move and Exchange II Move in
XTS are replaced by Interval Exchange and Apron
Exchange in ITS respectively.

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 6

6.3. Results and analysis

We implement XTS and ITS algorithms in JAVA and
run them in PIII667 Windows machine. In order to com-
pare their effectiveness in the situation that some flights
should be assigned to the apron, we have added the
Apron Exchange Move to XTS. This will not affect the
performance two exchange moves of XTS since these
only deal with the flights that are assigned to gates. We
also code a brute-force method to get the optimal solu-
tion for small input size test cases. Five different types
of test data are generated and the details of the results
and analysis are presented in the following sections.

6.3.1. Test set 1: small inputs without flights out of
gates The first test set consists of 10 small size inputs.
All the flights can be assigned to the gates. We runs the
test case using brute-force method, XTS and ITS, and
the results are shown in Table 1.

We observe that, in small input test cases, ITS can
get the optimal solutions in most of the time (9 out of
10); however, XTS can only achieve 3 optimal solutions.
Both heuristics runs much faster than the exact method
in the relatively larger cases.

6.3.2. Test Set 2: small inputs with flights out of
gates The second test set also consists of 10 small test
cases, but some flights should be assigned to the apron
in these cases. The results are presented in Table 2.

We find that ITS is still superior. It achieves optimal
solutions among all the cases. XTS obtains 4 out of 10.
Also, the running time of ITS is good.

6.3.3. Test Set 3: randomized large inputs 100 test
cases are generated in this set, and they have 10 differ-
ent sizes, 10 cases in each size. We compare ITS and
XTS with the respect to the result and running time. The
details are presented in Table 3.(In all the tables, CPU
time is measured in seconds.)

We find that among these 10 groups of test cases, ITS
performs better than XTS in all the groups, in almost the
same (or less) running time.

6.3.4. Test Set 4: fully-packed inputs In this set of
test cases, all the flights are “fully packed”, one flight is
just followed by another. There are no gaps between the
consecutive flights.

This special designed set is used to test how our inter-
val exchange method works. Similar to Set 3, 10 groups
of test cases are generated, and each contains 10 cases.
Table 4 shows the results.

We find that for fully packed test cases, the advan-
tage of ITS is much more obvious, since the single ex-
change moves cannot be performed in many situations.
The interval exchange, however, is not similarly handi-
capped.

6.3.5. Test Set 5: large inputs with different densities
To discover the trend of the performance with different
test case sizes and flight densities, 100 cases are gener-
ated for the last set with 10 different sizes and 10 differ-
ent densities. The test case sizes are from 100 × 16 to
460 × 34, and the densities are evenly distributed from
55% to 95% (100% is the fully packed case). These test
results are shown in Table 5 (grouped by size) and Ta-
ble 6 (grouped by density) respectively.

Although there are some exceptional cases, in gen-
eral, we have found that the performance of ITS is better
when density and size increase. As we know, when size
and density is larger, feasible solutions that can be ob-
tained by Exchange I Move and Exchange II Move in
XTS will be less likely, and the search, consequently,
easily trapped. However, the Interval Exchange Move
will not be impeded in ITS since it is more flexible.
These experimental results clearly show the advantage
of the ITS method, and particularly, of the Interval Ex-
change Move.

7. Conclusion

In this paper, we considered the basic over-
constrained AGAP, which is to minimize the number of
flights assigned to the apron while minimizing the to-
tal walking distances. We provided a greedy algorithm
that can allocate the flights to minimize the num-
ber of flights that will be ungated as well as to provide
an initial feasible solution. We then proposed a Tabu
Search algorithm with a new neighborhood search tech-
nique, the Interval Exchange Move, which is more
flexible and more general than previously employed ex-
change moves used for this problem. This search move
allows us to find good quality solutions more effec-
tively for more diverse neighborhoods, where currently
known exchange moves would not work. Experiments
were conducted using a range of test data sets. Our al-
gorithm is compared with a previous Tabu Search
method, adapted for over-constrained AGAP, and re-
sults show its superiority in the AGAP optimal assign-
ments and in running times, especially for the larger and
denser data sets.

References

[1] O. Babic, D. Teodorovic, and V. Tosic. Aircraft stand as-
signment to minimize walking. Journal of Transportation
Engineering, 110:55–66, 1984.

[2] J. Braaksma and J. Shortreed. Improving airport gate us-
age with critical path method. Transportation Engineer-
ing Journal of ASCE 97, pages 187–203, 1971.

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 7

Size Brute Force XTS ITS
(n × m) cost CPU cost CPU cost CPU
15 × 3 7322 0.05 7591 0.451 7322* 0.63
16 × 3 8759 0.06 8793 0.531 8759* 0.68
17 × 3 9448 0.05 9538 0.561 9448* 0.711
18 × 4 9053 16.995 9053* 0.64 9053* 0.991
18 × 4 10308 0.17 10820 0.631 10308* 0.871
20 × 5 12153 184.195 12153* 0.761 12153* 1.192
20 × 5 12950 107.365 12958 0.741 12950* 1.161
20 × 6 13095 14469.186 13095* 0.781 13095* 1.152
22 × 5 11822 402.388 11856 0.081 11835 1.332
25 × 5 15715 1445.388 16133 1.012 15715* 1.572

* indicates the optimal solutions

Table 1. Results for test set 1

Size Brute Force XTS ITS
(n × m) cost CPU cost CPU cost CPU
15 × 3 342690 0.19 342716 1.051 342690* 0.481
16 × 3 344811 0.12 344811* 0.992 344811* 0.842
17 × 3 325795 0.09 325795* 0.981 325795* 0.851
20 × 3 441774 1.071 441924 1.072 441774* 1.002
20 × 3 524798 0.331 524868 1.141 524798* 0.942
24 × 3 790815 6.81 790815* 1.122 790815* 1.102
25 × 4 1055866 89.82 1055866* 1.052 1055866* 1.082
25 × 4 1013013 150.67 1313482 1.212 1013013* 1.222
25 × 4 1213690 179.51 1214073 1.172 1213690* 1.132
25 × 4 1189388 128.69 1189630 1.102 1189388* 1.042

* indicates the optimal solutions

Table 2. Results for test set 2

Size XTS ITS Savings
(n × m) cost CPU cost CPU (%)
100 × 16 106553 8.249 105451 9.092 1.035
160 × 20 183208 22.054 180338 22.631 1.566
220 × 24 252150 47.646 248361 43.962 1.503
280 × 28 318505 84.645 314488 75.286 1.261
340 × 32 390228 134.582 382374 119.796 2.013
400 × 36 457218 212.773 445238 178.215 2.620
460 × 40 528817 333.776 517772 250.532 2.089
520 × 44 596820 524.734 582537 347.864 2.393
580 × 48 664954 813.155 651299 464.284 2.053
640 × 52 729114 1118.897 714990 587.811 1.937

Table 3. Results for test set 3

Size XTS ITS Savings
(n × m) cost CPU cost CPU (%)
100 × 16 228929 10.676 211500 16.675 7.613
140 × 18 400960 19.527 357701 22.008 10.789
180 × 20 556958 29.091 496218 36.866 10.906
220 × 22 734149 42.200 644356 60.480 12.231
260 × 24 934664 58.508 811147 68.162 13.215
300 × 26 1152765 79.762 1006603 69.511 12.679
340 × 28 1387079 111.708 1194938 96.902 13.852
380 × 30 1620387 153.561 1401163 130.030 13.529
420 × 32 1888442 199.746 1619008 169.448 14.268
460 × 34 2157675 260.184 1833132 218.553 15.041

Table 4. Results for test set 4

Size XTS ITS Savings
(n × m) cost CPU cost CPU (%)
100 × 16 185493 7.842 181632 8.134 2.081
140 × 18 310932 14.138 298082 14.141 4.133
180 × 20 432695 21.574 412614 20.680 4.641
220 × 22 562638 30.873 533250 27.872 5.223
260 × 24 710704 41.782 670608 38.662 5.642
300 × 26 865970 56.050 813462 47.470 6.063
340 × 28 1026543 80.582 948443 83.156 7.608
380 × 30 1212541 110.537 1122868 111.835 7.395
420 × 32 1389721 144.286 1280326 144.766 7.872
460 × 34 1580388 184.505 1462915 174.321 7.433

Table 5. Results for test set 5 — grouped
by size

Density(%) 50 55 60 65 70
Avg Savings(%) 2.873 3.226 3.698 3.565 3.513

Density(%) 75 80 85 90 95
Avg Savings(%) 5.043 4.928 5.261 8.756 13.200

Table 6. Result for test set 5 — grouped by
density

[3] Y. Cheng. Network-based simulation of aircraft at gates in
airport terminals. Journal of Transportation Engineering,
pages 188–196, 1998.

[4] Y. Cheng. A rule-based reactive model for the simula-
tion of aircraft on airport gates. Knowledge-based Sys-
tems, 10:225–236, 1998.

[5] F. Glover and M. Laguna. Tabu Search. Kluwer Acadamic
Publishers, 1997.

[6] A. Haghani and M. ching Chen. Optimizing gate assign-
ments at airport terminals. Transportation Research A,
32(6):437–454, 1998.

[7] T. Obata. The quadratic assignment problem: Evaluation
of exact and heuristic algorithms. Tech. Report TRS-7901,
Rensselaer Polytechnic Institute, Troy, New York, 1979.

[8] J. Xu and G. Bailey. The airport gate assignment problem:
Mathematical model and a tabu search algorithm. In Pro-
ceedings of the 34th Hawaii International Conference on
System Sciences-2001, 2001.

[9] S. Yan and C.-M. Chang. A network model for
gate assignment. Journal of Advanced Transportation,
32(2):176–189, 1998.

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 8

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

