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Abstract: Modeling of water flow in the propagating cracks plays an important role in the stability analysis of concrete dams. The water
pressure within concrete cracks is a function of water permeability of the crack. In this paper, a partially saturated finite-element algorithm is
used for numerical modeling of water pressure within a propagating cohesive crack. In order to calculate fracture opening along the crack path
suitably, a trilinear cohesive law is considered to describe mechanical behavior of the fracture process zone. The zero-thickness cohesive
interface elements are used to capture the mixed-mode fracture behavior in tension and compression. On the basis of the experimental data, it
is shown that a unified formula for natural fractures permeability can suitably describe the permeability of a propagating crack in both cases of
slow and fast loading rates. DOI: 10.1061/(ASCE)EM.1943-7889.0001048. © 2016 American Society of Civil Engineers.
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Introduction

Modeling of water flow in the propagating cracks plays an impor-
tant role in the stability analysis of concrete dams. These structures
normally have cracks in practical service caused by previous
earthquakes, construction conditions, or temperature effects. For
a concrete dam subjected to its probable maximum flood, the hy-
drostatic pressure acting inside the crack induces additional
material damage and hence reduces the resistance against further
cracking and increases the penetration of water that exerts uplift
pressure (Zhu and Pekau 2007). The water pressure inside the
cracks significantly reduces the structural resistance of the concrete
gravity dams (Bhattacharjee and Leger 1995). Significant research
efforts on modeling of fracturing in concrete dams have been made
over the last three decades (Chappell and Ingrafea 1981; Dewey
et al. 1994; Feng et al. 1996; Plizzari 1997; Barpi and Valente
2000; Javanmardi et al. 2005; Pekau and Zhu 2008; Shi et al.
2013). Most of the numerical studies use the discrete crack
approach because it offers a physically consistent and numerically
precise way to model discontinuity of the crack and uplift pressures
within crack surfaces (Shi et al. 2003).

The water pressure within concrete cracks is a function of water
permeability of the crack. Experimental studies (Brühwiler and
Saoma 1995a, b) have shown that the static pressure inside a crack
is a function of crack opening and that along the fracture process
zone this pressure reduces from full reservoir pressure to zero.
Reinhardt et al. (1998) showed that cracks with an opening of more
than approximately 0.04 mm are more permeable than undamaged
concrete. For smaller crack widths, the penetration behavior is

similar to that of uncracked concrete. From the experimental re-
sults, Slowik and Saouma (2000) proposed an interface model con-
sidering crack fluid permeability as a function of crack opening
displacements. However, they did not consider roughness of crack
walls as a key parameter in crack permeability. Barani et al. (2011)
and Barani and Khoei (2014) developed a numerical tool to model
cohesive crack propagation in semisaturated porous media. They
considered a bilinear cohesive law to model the mechanical behav-
ior of the fracture process zone. However, the bilinear cohesive law
cannot properly simulate the opening of a propagating crack in the
concrete fracture process zone.

The aim of this paper is to show that Barton’s et al. (1985) for-
mula for the permeability of natural fractures can suitably describe
the permeability of a propagating crack in both cases of slow and
fast loading rates.

A partially saturated finite-element algorithm is used for the
numerical modeling of water pressure within a propagating
cohesive crack. To calculate fracture opening along the crack path
suitably, a trilinear cohesive law is considered to describe the
mechanical behavior of the fracture process zone. The zero-
thickness cohesive interface elements are used to capture the
mixed-mode fracture behavior in tension and compression. The
experimental data provided by Slowik and Saouma (2000) are used
to show that Barton’s formula, which considers the effect of wall
roughness on the permeability of natural fractures, can suitably de-
scribe the permeability of a propagating crack in both cases of slow
and fast loading rates.

Finite-Element Formulation of Semisaturated Porous
Media

The material behavior of concrete can be described within the
framework of the theory of porous media first formulated by Biot
(1941). The first numerical solution for the Biot’s equations was
made by Ghaboussi and Wilson (1973). Zienkiewicz et al.
(1990) proposed a simple extension of a two-phase formulation
to semisaturated problems, assuming that the air or gas present
in the pores remains at atmospheric pressure. The coupled equa-
tions that consider the air and water phases in a porous medium
have been given by Alonso et al. (1990) and Gawin and
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Schrefler (1996). However, because of the great complexity of
three-phase models, extensive specially designed tests are required
to determine the properties of the matrix-air-water mixture.

The effective stress is an essential concept to describe the
deformation of solid skeleton in the theory of porous media.
The effective stress σ 0

ij can be defined by σ 0
ij ¼ σij þ αδijSwpw,

where δij = Kronecker delta; σij = total stress with positive value
in tension; and pw = water pressure with positive value in compres-
sion. In this relation, α = Biot coefficient, defined by
α ¼ 1 − KT=Ks, with KT and Ks = bulk modulus of porous
medium and solid particles, respectively. Sw = water saturation,
defined as a function of the water pressure, i.e., Sw ¼ SwðpwÞ.

The linear momentum balance for the mixture of solid-fluid
phase can be written as

σij;j þ ρbi ¼ 0 ð1Þ

where bi = body force per unit mass; and ρ = density of total mix-
ture, defined by ρ ¼ nSwρw þ ð1 − nÞρs, with ρw = water density,
ρs = density of solid particles, and n = porosity.

Incorporating the Darcy law, the mass balance for the fluid
phase can be written as

½−krmkijðpw;j þ ρwüj − ρwbjÞ�;i þ αSwε̇ii þ
ṗw

Q� ¼ 0 ð2Þ

where εii = total volumetric strain; kij = permeability tensor of the
medium; krm = relative permeability of the matrix, which is a func-
tion of the water pressure, i.e., krm ¼ krmðpwÞ; andQ� is defined as

1

Q� ¼ Cs þ n
Sw
Kw

þ ðα − nÞ Sw
Kw

�
Sw þ Cs

n
pw

�
ð3Þ

where Kw = bulk modulus for liquid phase; and Cs = specific
moisture content, defined as ndSw=dpw (Zienkiewicz et al. 1999).

The governing Eqs. (1) and (2) can be discretized for quasi-
static problems in the absence of acceleration terms by using
two sets of shape functions Nu and Np for two variables ui and
pw, defined as u ¼ Nuū and pw ¼ Npp̄w, on the basis of the stan-
dard Galerkin technique to transform these equations into a set of
algebraic equations as

Kū −Qp̄w ¼ fð1Þ ð4Þ

Q ˙̄uþHp̄w þG ˙̄pw ¼ fð2Þ ð5Þ
where the stiffness matrixK, the coupling matrixQ, the permeabil-
ity matrix H, and the compressibility matrix G are defined as

K ¼
Z
Ω
BTDBdΩ Q ¼

Z
Ω
BTSwαmNpdΩ

H ¼
Z
Ω
∇NT

pkkrm∇NpdΩ G ¼
Z
Ω
NT

p
1

Q� NpdΩ ð6Þ

and

fð1Þ ¼
Z
Ω
NT

uρbdΩþ
Z
Γt

NT
u t̄dΓ

fð2Þ ¼ −
Z
Ω
NT

p∇TðkkrmρwbÞdΩþ
Z
Γq

NT
p
qw
ρw

dΓ ð7Þ

where B = matrix relating the increments of strain and displace-
ments; D = material property matrix of solid skeleton; and m ¼
½1; 1; 0; 1�T (Khoei et al. 2006). In the aforementioned relations,
Ω = domain of fluid and solid fields; Γt = external boundary for

traction; Γq = external boundary for influx; and qw = imposed flux
on Γq. The permeability matrix k is defined as

k ¼
�
kx kxy
kyx ky

�
ð8Þ

where kx and ky = permeability coefficients in x- and y-directions,
respectively; and kxy and kyx = zero when x and y are principal
directions of the permeability matrix.

Because of ongoing hydration, concrete remains unsaturated
even though it is stored under water (Gawin et al. 2006). On
the basis of the pore network model, a relationship between
the capillary pressure and the water saturation is proposed by
van Genuchten (1980) as

SwðpwÞ ¼
�
1þ

�
pw

pr

�
1=ð1−mÞ�−m

ð9Þ

in which the reference pressure pr and the coefficientm are defined
on the basis of the experimental data obtained by Baroghel-Bouny
et al. (1999) as pr ¼ 18.6237 MPa and m ¼ 0.4396, respectively.
The relative permeability is defined for soils by van Genuchten
(1980) as

krmðSwÞ ¼
ffiffiffiffiffiffi
Sw

p
½1 − ð1 − S1=mw Þm�2 ð10Þ

The applicability of aforementioned relation in modeling of
moisture transport in unsaturated concrete is shown by Savage
and Janssen (1997).

Mechanical Behavior of Fractured Media

Cohesive zone modeling has gained considerable attention over the
last decade, as it represents a powerful yet efficient technique to
describe the mechanical behavior of fractures in quasi-brittle
materials. It was originally introduced by Barenblatt (1959) and
Dugdale (1960). During the fracture process, the microcracking
phenomenon near the crack tip consumes a part of the external
energy introduced by the applied load. Generally, the crack surface
is a tortuous path because of crack branching around aggregates.
The microcracking density distribution at the fracture front may
vary depending on the structure size, shape, and type of loading.

The first implementation of cohesive crack model in the finite-
element method was performed by Hilleborg et al. (1976). They
extended the concept of cohesive crack for concrete by proposing
that the cohesive crack may be assumed to develop anywhere, even
if no preexisting macrocrack is actually present, which is called the
fictitious crack model. Xu and Needleman (1994) proposed a po-
tential-based cohesive law in which cohesive elements are inserted
into a finite-element mesh in advance. Although the model of Xu
and Needleman has been widely used because of its easy imple-
mentation, it induces artificial compliance because of the elasticity
of intrinsic cohesive law (Song et al. 2006). To alleviate this prob-
lem, Geubelle and Baylor (1998) and Espinosa and Zavattieri
(2003) proposed the bilinear cohesive zone model to reduce the
compliance by providing an adjustable initial slope in the cohesive
law. A suitable fracture criterion for the mixed-mode fracture was
proposed by Camacho and Ortiz (1996) and is widely used in lit-
erature: the quasi-static crack propagation in quasi-brittle materials
by Song et al. (2006) and Khoei et al. (2009); the quasi-static crack
propagation in saturated porous media by Simoni and Secchi
(2003), Schrefler et al. (2006), and Secchi et al. (2007); the dy-
namic crack propagation in saturated porous media by Khoei et al.
(2011); and crack propagation in semisaturated porous media by
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Barani et al. (2011). Khoei et al. (2011) indicated that if the
cohesive elements are inserted only on the crack path, then increas-
ing the number of cohesive elements does not increase artificial
compliance. Recently, Barani and Khoei (2014) extended the
cohesive crack model to simulated three-dimensional crack in
semisaturated porous media. To determine crack permeability on
the basis of crack propagation tests, in which there is a strong
coupling between fluid pressure and crack propagation, it is impor-
tant to model fracture process zone properly. Thus, in the following
section, trilinear modeling of cohesive law and its finite-element
formulation are described.

Theoritical Aspects of the Trilinear Cohesive Law and
Finite-Element Implementation

The mixed-mode cohesive fracture model involves the simultane-
ous activation of normal and tangential displacement discontinuity
with respect to the crack and corresponding tractions. In this model,
the effective traction te is resolved into the normal and tangential
components, i.e., tn and ts, where te ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2n þ t2s

p
. Likewise, the

effective displacement is defined by δe ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2n þ δ2s

p
, where δn

and δs = normal displacement and shear sliding of fracture surfaces,
respectively. The nondimensional effective displacement can be
defined as λe ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðδn=δcÞ2 þ ðδs=δcÞ2

p
, where δc = critical

displacement where complete separation, i.e., zero traction, occurs.
In Fig. 1, the trilinear cohesive law is shown in terms of the
normalized effective traction and normalized effective displace-
ment. The prepeak region represents the elastic part of the intrinsic
cohesive law, whereas the softening portion after the peak load
accounts for the damage occurring in the fracture process zone.
The parameter λcr is a nondimensional displacement, which is
defined to adjust the prepeak slope of the cohesive law, and is
set to a small value to obtain more exact results. If λe < λcr, the
normal and shear tractions are given as

tn ¼
σc

λcr

�
δn
δc

�
ts ¼

σc

λcr

�
δs
δc

�
ð11Þ

where σc = material strength. For bilinear cohesive law, if λe>λcr,
the normal and shear tractions in the case of loading are given by

tn ¼
σc

λe

1 − λe

1 − λcr

�
δn
δc

�
ts ¼

σc

λe

1 − λe

1 − λcr

�
δs
δc

�
ð12Þ

For trilinear cohesive law, if λe>λcr, the normal and shear
tractions in the case of loading are given by

tn ¼
σc

λe

�
β − 1

η − λcr
ðλe − λcrÞ þ 1

��
δn
δc

�
λcr < λe< η

ts ¼
σc

λe

�
β − 1

η − λcr
ðλe − λcrÞ þ 1

��
δs
δc

�
ð13Þ

tn ¼
σc

λe

β
1 − η

ð1 − λeÞ
�
δn
δc

�
λe>η

ts ¼
σc

λe

β
1 − η

ð1 − λeÞ
�
δs
δc

�
ð14Þ

where β and η = ratio of breaking point strength to tensile strength
and ratio of breaking point displacement to critical displacement,
respectively (Fig. 1). In the case of unloading, the normal and shear
tractions are given by

tn ¼
σc

λe1

1 − λe1
1 − λcr

�
δn
δc

�
ts ¼

σc

λe1

1 − λe1
1 − λcr

�
δs
δc

�
ð15Þ

where λe1 = nondimensional displacement just before unloading.
Fig. 2(a) shows the relation of tn=σc and δn=δc with different values
of δs=δc. Notice that in mixed mode, a cohesive law in terms of
normalized opening displacement jump and normalized traction
is not trilinear. The corresponding variations of ts=σc and
te=σc with δn=δc for different values of δs=δc are shown in
Figs. 2(b and c), respectively. As shown in Fig. 2, for
δs=δc ¼ 0, the effective traction is equal to the normal traction.
However, with increasing δs=δc, the value of tn=σc decreases
significantly.

To derive the components of cohesive material matrixCf for the
fractured zone, it needs to differentiate tractions with respect to the
normal and shear displacements

Cf ¼
�
Css Csn

Cns Cnn

�
¼

2
664
∂ts
∂δs

∂ts
∂δn∂tn

∂δs
∂tn
∂δn

3
775 ð16Þ

Hence, the components of cohesive material matrix Cf for
λe<λcr are governed by

Css ¼ Cnn ¼ σc

λcrδc
; Csn ¼ Cns ¼ 0 ð17Þ

For the trilinear cohesive law, the components of Cf matrix in
the case of loading for λcr<λe< η and λe>η are given by

Css ¼ ðλe − λcrÞ
σcδcðβ − 1Þ
η − λcr

�
1

λeδ2c
− 1

λ3
e

δ2s
δ4c

�

þ σcδcðβ − 1Þ
η − λcr

�
δs

λeδ2c

�
2

þ σc

λeδc
− σcδ2s
λ3
eδ3c

Csn ¼ Cns ¼
σc

λ3
eδ3c

�ðβ − 1Þ
η − λcr

λcr − 1

�
δsδn λcr<λe<η ð18Þ

1 

   Normalized effective displacement  

N
or

m
al
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ed

 e
ff
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tiv

e 
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tio

n 

λ0 
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et

eδ

η

β

cr

Fig. 1. Trilinear cohesive law in terms of normalized effective
displacement and normalized effective traction

© ASCE 04016011-3 J. Eng. Mech.

 J. Eng. Mech., 2016, 142(4): 04016011 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

U
N

B
 -

 U
ni

ve
rs

id
ad

e 
de

 B
ra

sí
lia

 o
n 

05
/0

1/
16

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.



Cnn ¼ ðλe − λcrÞ
σcδcðβ − 1Þ
η − λcr

�
1

λeδ2c
− 1

λ3e

δ2n
δ4c

�

þ σcδcðβ − 1Þ
η − λcr

�
δn
λeδ2c

�
2

þ σc

λeδc
− σcδ2n
λ3
eδ3c

Css ¼ ð1 − λeÞ
σcδcβ
1 − η

�
1

λeδ2c
− 1

λ3e

δ2s
δ4c

�
− σcδcβ

1 − η

�
δs

λeδ2c

�
2

Csn ¼ Cns ¼ −σcδcβ
1 − η

1

λ3e

�
δs
δ2c

��
δn
δ2c

�
λe>η ð19Þ

Cnn ¼ ð1 − λeÞ
σcδcβ
1 − η

�
1

λeδ2c
− 1

λ3e

δ2n
δ4c

�
− σcδcβ

1 − η

�
δn
λeδ2c

�
2

and in the case of unloading, they are given by

Css ¼ Cnn ¼ σc

δc

�
1 − λe1

1 − λcr

�
1

λe1
; Csn ¼ Cns ¼ 0 ð20Þ

If the normal component of traction is in compression, i.e., tn<0
and δn ¼ 0, the cohesive shear traction tsC can be defined according
to Eqs. (1)–(5) as

tsC ¼ σc

λcr

�
δs
δc

�
if λe<λcr

tsC ¼ σc

λe

�
β − 1

η − λcr
ðλe − λcrÞ þ 1

��
δs
δc

�

if λcr<λe<η ðloading-trilinearÞ

tsC ¼ σc

λe

β
1 − η

ð1 − λeÞ
�
δs
δc

�

if λe>η ðloading-trilinearÞ

tsC ¼ σc

λe1

1 − λe1
1 − λcr

�
δs
δc

�
if λe>λcr ðunloadingÞ ð21Þ

and the nondimensional effective displacement is defined as
λe ¼ jδs=δcj. In this case, the shear traction can be computed by
jtsj ¼ jtsCj þ μjtnj, with μ = friction coefficient.

Finite-Element Formulation of Fractured Media

The formulation of this section is used to describe the hydro-
mechanical behavior of fractured media including fracture process
zone. The finite-element formulation of fractured media for
quasi-static condition can be written similar to Eqs. (4) and (5) as

Kfū −Qfp̄w ¼ fð1Þf ð22Þ

QfūþHfp̄w þGf ˙̄pw ¼ fð2Þf ð23Þ

where the cohesive stiffness matrixKf, the coupling matrixQf , the
permeability matrix Hf, and the compressibility matrix Gf for
the fractured zone are defined similar to the semisaturated porous
media as

Kf ¼
Z
Ω
BT

fDfBfdΩ

Qf ¼
Z
Ω
BT

fSwmfNfdΩ

Hf ¼
Z
Ω
∇NT

fkfkrf∇NfdΩ

Gf ¼
Z
Ω
NT

f
1

Q�
f
NfdΩ

fð1Þf ¼
Z
Ω
NT

fρfbdΩ

fð2Þf ¼ −
Z
Ω
NT

f∇TðkfkrfρwbÞdΩ ð24Þ

where Q�
f ¼ 1=Q�

f ¼ nSw=Kw; ρf ¼ nSwρw; krf = relative per-
meability of fractured zone; and ðkfÞij = fractured zone permeabil-
ity tensor. In the aforementioned relations, Df ¼ wCf, with w =
fracture width; and the cohesive material matrix Cf is defined
in Eq. (16).

The stiffness matrix of cohesive fracture elements can be ob-
tained based on the standard contact elements (Khoei 2005).
The relative displacements at any points along the fracture
element, as shown in Fig. 3, are given by δ ¼ utop − ubot, where
δ ¼ fδs;δngT ; u ¼ fus;ungT ; ðusÞtop and ðunÞtop = displacements
in the local s- and n-directions of the top side of the element,
respectively; and ðusÞbot and ðunÞbot = displacements in the
local s- and n-directions of the bottom side of the element, respec-
tively. The relative displacements at any point of the element
can be related to the nodal values by δ ¼ Nfū, with

(a)

(b)

(c)

Fig. 2. (a) Relation of tn=σc and δn=δc with different values of δs=δc;
(b) corresponding variation of ts=σc with δn=δc for different values of
δs=δc; (c) corresponding variation of te=σc with δn=δc for different va-
lues of δs=δc
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Nf ¼ h−ðNfÞbot; ðNfÞtopi and ū ¼ hūbot; ūtopiT , where Nf = shape
functions of cohesive fracture element, i.e., ðNfÞbot ¼ fNf1;Nf2g
and ðNfÞtop ¼ fNf3;Nf4g. The shear and normal strains ε ¼
fγ;εng are obtained from the relative displacements as γ ¼
ð1=wÞδs and εn ¼ ð1=wÞδn. Hence, the strain vector can be defined
as ε ¼ Bfū, where the Bf matrix = ð1=wÞNf.

In Eq. (24), mf ¼ ½1; 0; 1�T ; ∇Nf is defined as

∇Nf ¼

2
64
∂Nf1
∂s

∂Nf2∂s
∂Nf3∂s

∂Nf4

∂s
−Nf1

w
−Nf2

w

Nf3

w

Nf4

w

3
75 ð25Þ

and kf is the fractured zone permeability matrix defined as

kf ¼
�
kl 0

0 kn

�
ð26Þ

where kl = longitudinal permeability coefficient; and kn =
transverse permeability coefficient. There are only a few published
data available for water flow in semisaturated fractured zones, and

the mechanism of flow and the characteristic behavior of relative
permeability in fractured zones are still undetermined. Hence, in
this study, the relative permeability of fractured zone is assumed
to be krf ¼ 1 according to (Meschke and Grasberger 2003). More

s 

1 2 

3 4 

x 

θ

n 

y 

1 

2 

4 

3 
δn

δs

Fig. 3. Zero-thickness double-noded interface element

Fig. 4. Specimen geometry for wedge-splitting test

Table 1. Material Parameters for Concrete

Material properties Fast loading Slow loading

Elasticity modulus (MPa) 25,000 15,500
Poisson ratio 0.17 0.17
Density of solid particles (kg=m3) 2,720 2,720
Water density (kg=m3) 1,000 1,000
Bulk modulus of solid (MPa) 36,000 36,000
Bulk modulus of fluid (MPa) 3,000 3,000
Permeability (m2=Pas) 10−15 10−15
Prosity 0.1 0.1
Fluid viscosity (MPa s) 10−9 10−9
Tensile strength (MPa) 1.6 1.6
Critical displacement δc (mm) 0.95 0.48
Ratio of breaking point strength to
tensile strength

0.19 0.25

Ratio of breaking point displacement
to critical displacement

0.085 0.148

Fig. 5. Cohesive laws for both slow and fast loading rates
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details with regard to the numerical implementation can be found in
Barani et al. (2011) and Khoei et al. (2011).

Assuming a large value for initial stiffness and transversal
conductivity, the cohesive interface elements are inactive in both
mechanical and fluid flow behavior before the stress reaches the
tensile strength of the medium. Therefore, it is computationally
convenient to use these elements on the crack path at the start
of simulation. Furthermore, after the crack propagates and the

cohesive tractions vanish, the stiffness of cohesive elements be-
comes zero, but their hydraulic behavior remains active.

Fractured Zone Permeability Coefficient

The parallel-plate model for fluid flow through a natural fracture is
the only model for which an exact solution of the hydraulic con-
ductivity is possible; this solution yields the well-known “cubic
law” (Witherspoon et al. 1980). This model follows the assumption
that the fracture walls can be represented by two smooth, parallel
plates with infinite dimensions, separated by an aperture w. The
real natural fractures and cracks, however, have finite sizes, rough
walls, and variable apertures. Because of the roughness of the crack
surfaces, the hydraulic conductivity of the natural fractures is much
less than the theoretically estimated according to cubic law, and the
parallel-plate model is inadequate to describe the flow in natural
fractures (Sisavath et al. 2003).

For a natural fracture, the aperture can generally be defined as
mechanical (geometrically measured) or hydraulic (measured by
analysis of the fluid flow) (Olsson and Barton 2001). The mechani-
cal fracture aperture w is defined as the average point-to-point
distance between two fracture surfaces, perpendicular to the se-
lected plane. Often, an average value is used to define the aperture.
The hydraulic aperture e can be determined from the laboratory
fluid-flow experiments. An important distinction has to be made
between the theoretical smooth wall hydraulic aperture e and
the real mechanical aperture w (geometrically measured) between
two irregular fracture walls. Owing to the tortuosity and the wall

Fig. 6. Load versus CMOD for both experimental and numerical re-
sults of the slow and fast loading rates

Fig. 8. Experimental and numerical water pressure variations for fast loading at various time steps using the input pressure of 0.21 MPa

Fig. 7. Experimental and numerical water pressure variations for slow loading at various time steps using the input pressure of 0.21 MPa
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friction, w is generally larger than e. An empirical model relating
the hydraulic aperture e to the real mechanical aperture w and the
fracture surfaces roughness JRCwas proposed by Barton et al. (1985).
This relationship was defined on the basis of the experimental
data as

e ¼ w2

JRC2.5 ð27Þ

where e and w are expressed in micrometer. This equation is only
valid for w ≥ e. The roughness of the crack surface depends on the
toughness and size of aggregates and the properties of matrix and
interface. On the basis of the hydraulic aperture in the fractured
zone, the longitudinal permeability coefficient kl can be expressed
as e2=12μ, where μ = dynamic viscosity.

Numerical Simulation Results

In this section, the proposed model for crack propagation in par-
tially saturated porous media is applied to simulate experimental
test results obtained by Slowik and Saouma (2000). They per-
formed wedge-splitting tests with water pressure at the mouth of
the crack to study water pressure inside the crack. The geometry
of the specimen is presented in Fig. 4. The water input pressure
is applied at the notch section, whereas zero pressure is assumed
at the rest of the boundary. Two different rates are used for the
crack-mouth opening displacement (CMOD), including the slow
crack opening with the rate of 2 μm=s and the fast crack opening
with the rate of 200 μm=s. The material properties used for exper-
imental tests in the case of fast and slow loading rates are given in
Table 1. Similar to Slowik and Saouma (2000), Barani et al. (2011)
assumed the same elasticity modulus for both tests with fast and
slow loading rates. However, this assumption cannot be verified
with experimental results. In this study, elasticity modulus for fast
loading test is assumed to be greater than for slow loading case.
Fig. 5 shows the assumed effective traction–effective displacement
relation for the fracture process zone in both fast and slow loading
rate cases. As shown in this figure, the same tensile strength values
are assumed in both cases, but the cohesive law in fast loading case
has a longer tail. Fig. 6 presents the load versus CMOD for both
experimental and numerical results of the slow and fast loading
rates. As shown in this figure, very good agreement exists between
numerical and experimental results, assuming trilinear cohesive law
for concrete material. Figs. 7 and 8 present the experimental and
numerical evolutions of water pressure along the crack path for
different time steps at an input water pressure of 0.21 MPa for
the slow and fast loading rates. Obviously, a good agreement
can be observed between the experimental and numerical results.
The results indicate that the Barton model with JRC equal to 20
satisfactorily predicts the hydraulic aperture for the entire of
fractured zone.

Conclusion

In the present paper, a partially saturated finite-element algorithm
was used for the numerical modeling of water pressure within a
propagating cohesive crack. The behavior of fractured media
was described by two equilibrium equations similar to those used
for the mixture of solid-fluid phase in partially saturated media,
including the momentum balance of fractured media and the
balance of fluid mass within the fracture. To suitably calculate
fracture opening along the crack path, a trilinear cohesive law
was considered to describe the mechanical behavior of the fracture

process zone. The zero-thickness cohesive interface elements were
used to capture the mixed-mode fracture behavior in tension
and compression. Finally, on the basis of the results of the
wedge-splitting tests performed by Slowik and Saouma (2000),
it has been shown that Barton’s formula for permeability of natural
fractures can suitably describe permeability of a propagating crack
in both cases of slow and fast loading rates.
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