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a b s t r a c t

This paper investigates an order allocation problem of a manufacturer/buyer among multi-
ple suppliers under the risks of supply disruption. A mixed integer non-linear program-
ming (MINLP) model is developed for order allocation considering different capacity,
failure probability and quantity discounts for each supplier. We have shown that the for-
mulated problem is NP-hard in nature and genetic algorithm (GA) approach is used to solve
it. The model is illustrated through a numerical study and the result portrays that the cost
of supplier has more influence on order quantity allocation rather than supplier’s failure
probability.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

In today’s global business market, sourcing decision is one of the major challenges faced by the buying firms and it has
received wide attention from both academicians as well as practitioners. Sourcing decision includes selection of right num-
ber of suppliers and order quantity allocation among the selected suppliers (Chopra and Meindl, 2005). The problem of
sourcing becomes more crucial when there is a possibility of occurrence of disruptions in the supply which may be natural
or created by man. Generally, supply disruptions are caused by the occurrence of high profile catastrophic events such as 9/
11, Hurricane and Katrina, in 2004, and tsunami in India in 2004. These events can seriously affect the profitability and per-
formance of the entire supply chain. The largest automaker company of the world, Toyota had to suspend the production at
its 12 assembly plants in March 2012 because of the devastating earthquake and tsunami in Japan and estimated a produc-
tion loss of 140,000 cars (Kim and Reynolds, 2011). For more examples on supply disruption, one can see the study of Klein-
dorfer and Saad (2005), Ellis et al. (2010), and Wakolbinger and Cruz (2011).

In the literature, many authors (for example, Wu et al., 2007; Yang and Yang, 2010; Ellis et al., 2010) have proposed dif-
ferent strategies to mitigate the effects of supply disruptions. Hou et al. (2010) have defined supply disruption as the sudden
non-availability of supplies due to the occurrence of an unexpected event making one or more supply sources totally
unavailable. Tomlin (2006) has suggested supply diversification is an efficient strategy to cope with the risk of supply dis-
ruptions and avoid the dependence on single supplier. Under multiple sourcing, the major issue before the buyer is the opti-
mal allocation of demand among the selected set of suppliers when the suppliers are exposed to the risk of supply
disruptions. There is a paucity of literature on optimal allocation of order among the suppliers under supply disruptions risk.
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In this paper, we have developed a mixed integer non-liner programming (MINLP) model to determine the optimal order
allocation among multiple suppliers when the suppliers are exposed to the risk of failure due to man-made or natural dis-
ruptions. We have shown here that the formulated problem is NP-hard in nature, and genetic algorithm (GA) is used to solve
it. The reason of using GA is that it has been proven to excel in solving combinatorial optimization problems in comparison to
traditional optimization techniques (Goldberg, 1998; Steiner and Hruschka, 2002).

The remainder of the paper is organized as follows: Section 2 provides a brief review of literature related to order allo-
cation problem. Description of the problem and development of the model are presented in Section 3. The problem complex-
ity is discussed in Section 4. Section 5 presents the GA approach to find the solution. Numerical experiments are conducted in
Section 6 and sensitivity analysis of different parameters is performed in Section 7. Finally, conclusions and future scope of
the work are presented in Section 8.

2. Literature review

A large number of studies are available in the literature on supplier selection and order allocation problems. Here, a brief
review of literature related to order allocation problem is discussed only. The research pertaining to order allocation can
broadly be classified into the following two categories:

(i) Order allocation without the consideration of supply disruptions risk.
(ii) Order allocation under supply disruptions risk.

2.1. Order allocation without the consideration of supply disruptions risk

Considerable amount of literature is available in this stream, and to the best of our knowledge, Sculli and Wu (1981) are
the frontrunners to study the order allocation problem. They have shown that in comparison to single sourcing, the mean
and variance of the lead time and demand distribution are reduced under dual sourcing. Further, they have shown that prob-
ability of stock out is less in dual sourcing as compared to single sourcing. Many authors have extended the work of Sculli
and Wu (1981) in different directions in the last two decades (for example, Sculli and Shum, 1990; Pan, 1989; Ramasesh
et al., 1991; Chaudhry et al., 1991; Lau and Zhao, 1993; Chiang and Benton, 1994; Sedarage et al., 1999; Basnet and Leung,
2005; Kawtummachai and Hop, 2005). Instead of discussing these studies in details, we refer the readers to Minner (2003)
and Thomas and Tyworth (2006) who have provided an extensive review on order splitting. In recent years, many authors
(for example, Burke et al., 2008a, 2008b; Wang et al., 2008; Qi, 2007; Che andWang, 2008; Yu and Tsai, 2008; Tsai andWang,
2010; Cheng and Ye, 2011) also have studied the similar problem. However, all the aforementioned studies have ignored the
risks of supply disruption.

Notation

D total demand of the buyer in a given period
CP base price of the item offered by each suppliers (mu) where, mu – monetary units
dij discount in percentage given by ith supplier in jth price break
b per supplier management cost (mu/supplier)
n number of potential suppliers
s number of price breaks
L loss per not obtained unit due to the supplier failure (mu)
Qbi actual capacity of individual supplier
Qi order quantity allocated to the ith supplier
p⁄ probability of occurrence of super-event that would fail all suppliers
pi probability of occurrence of unique-event that fails the ith supplier
Ki compensations of supplier(s) that don’t fail, where Ki = (Qbi � Qi)
A(i) set of suppliers who fail
Qmin minimum quantity ordered to each selected supplier
Qlot lot size of any supplier
h integer multiple which is used to get equal to Qlot from Qmin (i.e. Qmin = hQlot)
ki integer multiple required to reach from Qi to Qlot, for example, Qi = kiQlot

H integer multiple required to reach from Qlot to D, i.e. D = HQlot

S set of suppliers
p(S) power set of S

P.L. Meena, S.P. Sarmah / Transportation Research Part E 50 (2013) 84–97 85



2.2. Order allocation under supply disruptions

As supply chains are expanding globally, buying firms are allocating their business to foreign suppliers and in turn it is
increasing the risk of supply disruptions. Anupindi and Akella (1993) studied the problem of quantity allocation between
two uncertain suppliers and its effect on inventory policies of the buyer. They developed three models for different delivery
process from the suppliers. However, they did not consider quantity discount in their model. As far as we are aware, Ruiz-
Torres and Mahmoodi (2006) are the frontrunners who have studied the demand allocation problem under the risk of sup-
plier(s) failure. They developed a model considering the risk of supply delivery failure similar to Berger et al. (2004). The
authors incorporated output flexibility parameter in the model to consider the ability of suppliers to increase their output
when one or more supplier(s) fails to deliver. Output flexibility is defined as the ability of a supplier to increase its delivery
during a supply cycle. They used decision tree approach to solve the problem and stated that low output flexibility resulted
in an equal allocation across the suppliers, even when some suppliers offered a discount. Conversely, high output flexibility
resulted significantly higher allocation to the suppliers with higher risk but they have not considered different capacity for
different suppliers.

Burke et al. (2009) developed a model to compare single sourcing and multiple sourcing under stochastic supplier reli-
ability and stochastic demand. Their results show that when mean of the demand is low, single sourcing is a good strategy
whereas multiple sourcing is a good strategy when mean of the demand is high. They considered only partial failure of sup-
pliers to supply. However, they ignored quantity price discounts and risk of disruptive events that make suppliers com-
pletely unavailable to supply. Burke et al. (2008a) mentioned that quantity discounts often complicate the order
allocation problem under multiple sourcing. They considered various quantity discounts such as linear discount pricing,
incremental units discount pricing and all units discount pricing in order allocation models, but they ignored the supply dis-
ruptions risk. Benton and Park (1996), Munson and Rosenblatt (1998) and Dolan (1987) have extensively discussed about
different quantity discounts models.

The detailed review of literature shows that there is a dearth of studies pertaining to order allocation under the risks of
supply disruptions. Here, a mathematical model is developed to determine the optimal allocation of order quantity among
the selected suppliers. In the development of the model, we have considered that each supplier has different capacity, failure
probability and quantity discounts to represent more realistic situation, which are absent in the earlier work and is consid-
ered as the main contribution of this paper. Further, a compensation potential parameter is also incorporated in the model.
The problem description, model and GA approach for order allocation are discussed in the next section.

3. Problem description

The buyer procures single item from n multiple suppliers in a single period. It is assumed that the demand of the buyer is
known and constant, and a set of suppliers is already selected based on certain criteria (e.g. quality, service, delivery, main-
tenance, etc.) of the buyer and each supplier offers different price discounts based on order quantity. All suppliers have dif-
ferent capacity, failure probability and compensation potential. Further, we have considered that each supplier supplies
order quantities in lots. The allocated order quantity to a supplier must be equal to or some integer multiple of lot size of
the supplier and this type of situation is very much prevalent in actual business scenario.

Two different types of disruptive events namely unique event and super event are considered here similar to the study of
Berger et al. (2004) and Meena et al. (2011). The occurrence of unique-event leads to complete failure of a single particular
supplier to supply. Two or more suppliers may also fail simultaneously, if unique events occur at the same time at respective
suppliers end. On the other hand, due to the occurrence of a super event, all the suppliers fail completely to supply the nego-
tiated order quantity to the buyer. Our aim here is to determine the amount of order quantity to be allocated to each selected
supplier, while minimizing the expected total cost of the buyer. The expected total cost includes purchasing, supplier man-
agement and expected total loss costs. The following notation are used in the development of the model.

3.1. The model

The objective is to optimally allocate the total demand of the buyer among the multiple suppliers keeping expected total
cost minimum. The problem is formulated as given below.

Minimize ETCðQÞ ð1aÞ
Subject to Qmin 6 Qi 6 Qbi ð1bÞ

Qi 6 D� ðn� 1ÞQmin ð1cÞ
Qi ¼ kiQ lot ð1dÞXn
i¼1

Qi ¼ D ð1eÞ

ki 2 N1 and i ¼ 1;2; . . . ; n ð1fÞ
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where ki is an integer number andN1 is set of integer numbers and Q is allocated order quantity vector, Q = [Q1,Q2,Q3,. . . ,Qn].
Constraint (1b) ensures that allocated order quantity to any supplier must be greater than or equal to the minimum order

quantity of the supplier and less than the capacity of supplier and it implies that the order quantity has lower and upper
bounds. In reality, the buyer has to allocate a certain fraction of total order to a supplier to retain that supplier for future
business. Constraint (1c) shows the maximum possible order allocation to a specific supplier. Further, constraint (1d) shows
that order allocation to a specific supplier must be an integer (ki) multiple of the lot size of the supplier. Finally, constraint
(1e) ensures that the sum of the allocated order quantities among all the selected suppliers must be equal to the total de-
mand of the buyer. The expected total cost equation ETC(Q) can be written as follows:

ETCðQÞ ¼ PCðQÞ þ SMC þ ETLðQÞ ð2Þ

where PC(Q), SMC and ETL(Q) are the purchasing, supplier(s) management and supplier(s) failure loss costs respectively.

3.1.1. Purchasing cost
In most of the practical cases, it is found that a buyer procures material from multiple suppliers where the suppliers may

offer different price discounts to encourage a larger order quantity. Here, we have considered only all-unit quantity discount
with three price breaks as shown in Fig. 1.

Munson and Rosenblatt (1998) have mentioned that maximum number of price breaks offered by a supplier normally
does not exceed more than four in most of the real situations. The purchasing cost with quantity discount is formulated
as follows:

PCðQÞ ¼ CP

Xn
i¼1

Qið1� djiÞ where; j ¼ 1;2; . . . ; s ð3Þ

where dji is the discount in percent on price offered by ith supplier in jth price break.
The discounts provided by suppliers are as shown in Eq. (3.1), where dji is the discount in percent on price offered by ith

supplier in jth price break and 0 < Q1 < Q2 < Q3 are the order quantities for the ith supplier at which price-breaks occurs, and
0 < d1 < d2 < d3 are the associated price discounts.

dji ¼
d1 for Q1 6 Qi < Q2

d2 for Q2 6 Qi < Q3

d3 for Q3 6 Qi

8><
>: ð3:1Þ

3.1.2. Supplier management cost
The supplier management cost linearly increases as the number of supplier increases and it includes cost of negotiation,

managing a supplier contract, and monitoring the quality, etc. and one can write this cost as follows:

SMC ¼ bðnÞ ð4Þ

3.1.3. Expected total loss cost
The buyer may face a significant economic loss if the supplier(s) fails to deliver or supply the negotiated order quantity.

Here, we have considered the case of compensation from the un-failed supplier(s). When a particular or set of supplier(s)
fails to supply then the other set of un-failed supplier(s) compensate the shortfall that occurs due to the supplier(s) failure
by supplying extra quantity. It is assumed that the extra quantity supplied by the non-failed suppliers come at no extra cost.
Therefore under the risk of supply disruptions, the minimum order quantity received by the buyer from the given set of sup-
pliers in a particular period can be written as

Fig. 1. All unit quantity discount pricing.
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where Kl is the compensation provided by the supplier(s) who does not fail.
Finally, expected total loss because of the supplier(s) failure due to the occurrence of the unique and super-event can be

formulated as follows:
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The above formulated problem is an integer programming problem, where, Qi’s and ki’s are the decision variables and integer
number. From Eq. (1e), one can determine the value of ki as follows:

Xn
i¼1

ki ¼
D
Qlot

ð6Þ

By considering only ki’s, one can reduce the problem. Now, from Eqs. (1b) and (1c), one gets

Qmin 6 kiQ lot 6 D� ðn� 1ÞQmin

Qmin

Qlot
6 ki 6

D� ðn� 1ÞQmin

Qlot
ð7Þ

For a practical situation Qmin must be equal to Qlot or some integer multiple of Qlot (i.e. Qmin = hQlot) and as ki’s are integers, so,
from Eq. (6), it is found that D must be some integer multiple of Qlot (i.e. D = HQlot). In order to get any feasible solution of the
problem, the condition H > h must be satisfied. Precisely from Eq. (7), one gets H � (n � 1)hP h. Therefore, the condition
HP nh must also be satisfied to get any feasible solution of the problem. Now, Eq. (1f) reduces to ki 2 X � N1, where
X ¼ fh;hþ 1;hþ 2; . . . ;H � ðn� 1Þhg|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

jXj

.According to problem situation, the number of steps required to find the optimal solu-

tion is given by |X|n, where |X| represents the cardinality of the setX and is defined as the total number of elements present
in that set and n represents the number of suppliers. Here, we have not considered the constraint part of Eq. (6) (i.e.Pn

i¼1ki ¼ H) for calculating the complexity of the problem. Now, if we omit the situation H = nh (i.e. X is not a singleton
set, |X|P 2) then the complexity of the problem greater than O(2n), which represents, it is a NP-hard problem.

When one considers the constraint part of Eq. (6), then set X changes with the choice of supplier given by

X1 ¼ fh; hþ 1;hþ 2; . . . ;H � ðn� 1Þhg ð8aÞ

X2 ¼ fh; hþ 1;hþ 2; . . . ;H � ðn� 2Þh� k1g ð8bÞ

..

.

Xi ¼ h;hþ 1; . . . ;H � ðn� iÞh�
Xi�1

j¼1

kj

( )
ð8cÞ

..

.

Xn�1 ¼ h;hþ 1; . . . ;H � h�
Xn�2

j¼1

kj

( )
ð8dÞ

Xn ¼ h;hþ 1; . . . ;H �
Xn�1

j¼1

kj

( )
¼ fkng ð8eÞ

Depending upon the situations, we have multiple choice for ki’s, and Eq. (6) restricts our choice to only kn for the case i = n.
Now, |Xi| is given by mi ¼ 1þ

Pn
j¼1ðkj � hÞ. For the case i = 1

m1 ¼ H � nhþ 1 ¼ H
h
� n

� �
hþ 1 ¼ ðN � nÞhþ 1 P 2

Cardinality must be a whole integer H
h ¼ N 2 N1 and (N � n)P 1, if we consider the situation HP nh. Similarly, for the case i,

mi P 2 also arises because of HP nh. So for at least one j, kj � h > 0 and kj and h are integers, kj � hP 1 coming straight for-
ward. Therefore, numbers of choices are given by

Qn
i¼1jXij ¼

Qn
i¼1mi P 2n�1.
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Now, the original problem can be reduced to the form given by (P),

Minimize f ðkiÞ

Subject to
Xn

i¼1

ki ¼ H

h 6 ki 6 H � ðn� 1Þh
ki is an integer and i ¼ 1;2; . . . ; n
where;f ðkiÞ is PCðQÞ þ SMC þ ETLðQÞ

4. Problem complexity

In this section, it is shown that the above discussed problem is NP-hard in nature.

Definition PARTITION. Given n positive integers a,w1,w2, . . . ,wn, c, is there a subset S#N1 ¼ f1;2; . . . ;Ng such thatP
i2Swi ¼

P
i2N1=Swi? is a basic NP-complete problem, originally treated in Karp (1972). One can refer the work of Martello

and Toth (1990) for the same proof.

Lemma 1. SUBSET-SUM is NP-hard.

Proof. Consider R (SUBSET-SUM): Given n + 2 positive integers a,w1,w2, . . . ,wn,c, is there a subset S#N1 ¼ f1;2; . . . ;Ng such
that

P
i2Swi 6 c and

P
i2Swi P a?

If we consider set c ¼ a ¼
P

j2N1

wi
2 then any instance I of PARTITION can be polynomially transformed into an equivalent

instance I1. h

Lemma 2. 0–1 KNAPSACK is NP-hard.

Proof. Consider 0–1 KNAPSACK:

Maximize
Xn

i¼1

cixi

Subject to
Xn

i¼1

wixi 6 W

xi ¼ f0;1g; i ¼ 1;2; . . . ; n:

when ci ¼ wi for j 2 N1, SUBSET-SUM is the particular case of 0–1 KNAPSACK. h

Lemma 3. BOUNDED KNAPSACK is NP-hard.

Proof. Consider BOUNDED KNAPSACK:

Maximize
Xn

i¼1

xi

Subject to
Xn

i¼1

wixi 6 W

0 6 xi 6 bi; i ¼ 1;2; . . . ;n;
xi is integer i ¼ 1;2; . . . ;n:

0-1 KNAPSACK is the particular case of BOUNDED KNAPSACK when bi ¼ 1 8i 2 N1. h
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Claim 4. (P) is NP-hard.

Proof. Consider (P):

Maximize � f ðkiÞ

Subject to
Xn

i¼1

ki ¼ H

h 6 ki 6 H � ðn� 1Þh; i ¼ 1;2; . . . ; n;
ki is integer and i ¼ 1;2; . . . ; n:

BOUNDED KNAPSACK is the particular case of (P) when bi ¼ H � ðn� 1Þh 8i 2 N1, lower limit is defined by h and ki is trea-
ted as xi. Note that in the capacity constraint, we impose equality sign instead of inequality and the maximization condition
can be implemented by putting negative sign before the objective function. h

5. Solution methodology

Here, genetic algorithm (GA) is used to solve the problem. GA is one of the non-traditional search techniques and it differs
from traditional optimization techniques in various ways such as it uses an encoding of the parameter rather than param-
eters themselves; GA search from one population of solutions to another rather than from individual to individual; it uses
fitness function information to guide themselves through the solution space, not derivatives and it uses probabilistic tran-
sitions rules instead of deterministic rules. Further, comparing with traditional optimization techniques, GA has been proven
to excel in solving combinatorial optimization problems. Considering the aforementioned merits, we have employed GA to
solve the problem.

5.1. The optimal values of GA parameters

Srinivas and Lalit (1994) have mentioned that there is no perfect way for parameters setting in GA except for experimen-
tal training. The procedure adopted for determining the optimal values of GA parameters (population size, crossover prob-
ability pc and mutation probability pm and no. of generation Gen.) is briefly described here. The performance of a genetic-
search depends on the amount of exploration (population diversity) and exploitation (selection process). To have an effective
search, there must be proper balance between them and to ensure this, the values of GA parameters need to be selected in
optimal sense. The following steps are followed as described by Pratihar (2008) to find the optimal values of GA parameters:

� First we varied pc within its range (0.6–1.0), while keeping other parameters fixed at their respective mid values.
� Second, we fixed the values of pc, N and G respectively and varied the values of pm from 0.01 to 0.2.
� Third, the values of pc, pm and G are kept fixed and the population size is varied from 30 to 100.
� Finally, we varied the no of generation G in the range of 30–150 keeping the values of other parameters (pc, pm andN) fixed.

5.1.1. Steps of GA for demand allocation
Here, binary GA is used to solve the allocation problem. The procedure of GA is as follows:

Generate an initial population,
Evaluate fitness of individual in the population,
repeat:
Select parents from the population,
Recombine (mate) parents to produce children,
Evaluate fitness of the children,
Replace some or all of the population by the children,
until a satisfactory solution have been found.

The demand allocation can be represented as follows:

Minimize ETCðnÞ

Subject to
XN
z¼1

Qz ¼ D

Qmin 6 Qz 6 Qmax z ¼ 1;2; . . . ;N
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5.1.2. Genetic operators
This section provides brief explanation pertaining to different operators of genetic algorithm that have been utilized in

solving the problem.

5.1.2.1. Selection. The traditional selection operator, the roulette wheel selection is used, generating the increase in the num-
ber of high quality individuals from generation to generation.

5.1.2.2. Crossover. The traditional crossover consists in choosing at random an index of variable and exchanging the bits on
both sides of this point, as shown in the Fig. 2.

5.1.2.3. Mutation. The mutation operator acts in two phases. Initially it chooses the gene to be modified, i.e. the variation,
then a particular bit of this variable as shown in Fig. 3. The problem in hand is an integer programming problem with
bounded situation with the decision variables. Roulette-Wheel selection is used for reproduction and single point crossover
and population is generated for only integer values. Initial population generated by binary GA is modified accordingly to get
the feasible solution for the problem. Generated integer variables are converted to the nearest bound values to get a feasible
solution.

5.1.2.4. The algorithm of repair operator for the constraints. The first constraint of the problem is handled by the repair oper-
ator. The repair operator consider here consists of two phases. The first phase called DROP phase, examines each variable in

decreasing order of Qz’s and changes the variable from Qz to Qz �
PS

j Q j � D
� �

as long as feasibility is not violated with re-

spect to lower bounds (LBi’s). The second phase called ADD phase, examines each variable in increasing order of Qz’s and

changes the variable from Qz to Qz þ
PS

j Q j � D
� �

as long as feasibility is not violated with respect to upper bounds (UBi’s).

The aim of the repair operator is to obtain a feasible solution from an infeasible solution. Algorithm for the repair operator is
given below:

DROP Phase
Set, Qz’s in decreasing order,
repeat:

Initialize R :¼
PS

j Q j � D,
If Qi � RP LBi then Qi = Qi � R
Else Qi = LBi and set R : = R � (Qi � LBi),

until R := 0.
ADD Phase
Set, Qz’s in increasing order,
repeat:
Initialize R :¼ D�

Pn
j Qj;,

If Qi + R 6 LBi then Qi = Qi + R,
Else Qi = LBi and set R := R � (UBi � Qi),

until R := 0.

1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0

1 1 1 1 0 0 0 0 0 0

0 0 0 0 1 1 1 1 1 1 

1 1 1 1 0 0 0 0 0 0

0 0 0 0 1 1 1 1 1 1

Randomly determined 
crossover point

Two good solutions

}

}

Two offspring 
solutions

Fig. 2. Crossover.

P.L. Meena, S.P. Sarmah / Transportation Research Part E 50 (2013) 84–97 91



In the DROP phase, variables with the highest Qz is considered first, are successively decreased from the original value
until a feasible solution is achieved. Similarly, in the ADD phase we consider the lowest Qz at first, and increase the value
until we found a feasible solution. The repair operator always produce a feasible solution from an infeasible solution is a
greedy algorithm. In many scenarios in the literature, we find this kind of repair operators (see Chu and Beasley (1998)
and Fox and Scudder (1985)).

6. Numerical experiments

In this section, numerical studies are conducted to illustrate the proposed mathematical model and GA for order alloca-
tion among multiple suppliers under the risk of supply disruptions. GA is coded in MATLAB 7.13 and the numerical exper-
iments were executed on a personal computer equipped with a Core(TM)-2-Duo @ 2.93 GHz, with 1.49 GB of RAM, running
onWindows XP. The total numbers of suppliers have been increased from small to large for enlarging the size of the problem.
Thus, 10 problems of one, two, three, four, five, six, seven, eight, nine and ten suppliers are considered separately from a set
of ten suppliers for evaluating the performance of the algorithm.

For the numerical study, it is considered that demand of the buyer is 100 units in a given period, base price of the item
offered by all the suppliers is 10 mu per unit, management cost per supplier is 20 mu, loss per not received unit due to the
supplier failure is 15 mu and the probability of occurrence of the super-event is 0.01. The values of other parameters such as
capacity, failure probability, price breaks quantities and price discount percentage of each supplier is given in Table 1.

6.1. Computational results and discussion

To solve the problem with GA, first the optimal value of GA parameters (Pop_size, Pc, Pm and Gen) are determined, its
program was ran for 20 iterations to find the better solution. The results of demand allocation for different problems with
GA are shown in Table 2. For the problem of two suppliers (S1 and S2), there may be different combinations for allocating the
total demand of the buyer between these two suppliers. After calculating ETC for all possible combinations, it is found that
the allocation of 10 units to S1 supplier and 90 units to S2 supplier has minimum ETC. On the other hand, for three suppliers
problem (S1, S2 and S3), the results show that the allocation of 10, 10, and 80 units among S1, S2 and S3 respectively has
minimum ETC. Supplier S3 has received maximum order quantity in-spite of having higher failure probability. This has hap-
pened as supplier S3 provides higher discount as compared to the other suppliers. Similarly, for the rest of the problems, the
results are presented in Table 2.

The results of all suppliers’ problems reveal that best strategy for the buyer is to allocate maximum possible order quan-
tity to a supplier that offer high discount, and keep rest of the suppliers into the supply base by allocating minimum possible
order quantity. The computational results show that the supplier with high discount and low failure probability has received
maximum order quantity as compared to the other suppliers. Moreover, if the price discounts of all suppliers are equal then
the supplier with less failure probability will get the maximum order quantity. Since allocation of maximum order quantity
to the highest discount providing supplier will reduce the expected total cost, the buyer can keep less failure probability sup-

Table 1
Data of capacity, unique-events probability and price discounts of each supplier.

Supplier no. Supplier’s capacity (units) Unique-events probability Price break quantities (units) Associated price discounts (%)

S1 70 0.13 30 45 60 0.11 0.22 0.31
S2 93 0.09 40 55 70 0.07 0.19 0.29
S3 110 0.15 35 45 50 0.09 0.18 0.33
S4 90 0.17 50 60 80 0.14 0.19 0.25
S5 105 0.12 30 40 45 0.10 0.15 0.27
S6 80 0.19 37 52 60 0.17 0.21 0.30
S7 95 0.05 30 45 55 0.13 0.23 0.35
S8 115 0.14 45 50 65 0.10 0.29 0.37
S9 100 0.11 40 55 60 0.15 0.25 0.35
S10 140 0.16 50 60 70 0.20 0.27 0.46

Fig. 3. A single point mutation.
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pliers as backup for emergency as the probability of disruptive events are very less. Furthermore, the results also indicate
that as compared to single (sole) sourcing multiple sourcing is best strategy.

7. Sensitivity analysis

In this section, sensitivity analysis of various parameters is performed to investigate their impact on the final solution.

7.1. Sensitivity analysis of failure probability and quantity discounts

The values of failure probabilities and price discounts of the suppliers are varied at different levels keeping the other
parameters value at their base value (as used in the previous numerical studies). Here, three suppliers (for example, S8,
S9 and S10) problem was considered to perform the sensitivity analysis. The different values of failure probability and price
discounts considered for these suppliers are given in Table 3. Three different levels such as low, medium and high are con-
sidered for the values of failure probability and price discounts of the suppliers. Further, it is considered that all suppliers
provide price discounts at price breaks quantities of 30, 40, and 60 units and the minimum allocation to each supplier is con-
sidered as 10% of the total demand.

The results of sensitivity analysis for different values of failure probabilities and price discounts are presented in Table 4.
In order to explore the effects of supplier’s failure probability and price discounts on order allocation, first, we have consid-
ered that all suppliers have low failure probability and offers low discounts. Similar to the results in last section, here also the
buyer has allocated maximum order quantity to the supplier who has provided high price discount though it has high failure
probability as compared to other suppliers and retained reliable but expensive suppliers as backup by allocating minimum
proportion of the total demand. From the results of the sensitivity analysis, it is observed that first priority for order quantity
allocation is price discount rather than failure probability of the supplier.

From the results of the sensitivity analysis, it is observed that under same failure probability and at low level discount,
maximum order quantity is allocated to the highest capacity supplier. It is because the highest capacity supplier can provide
more compensation compared to other suppliers. Further, the results depict that as the value of price discount percentage
increases (i.e. at medium and high level), the allocation of order quantity among all suppliers comes closer or equal in-spite
of having higher differences in failure probabilities of suppliers.

7.2. Sensitivity analysis of demand

To perform demand sensitivity analysis, values of demand is varied at six different levels with different failure probability
and price discounts. The results of sensitivity analysis are given in Table 5.

The results presented in Table 5 depict that when the demand of the buyer is less and suppliers are having sufficient or
large capacity, it is optimal to allocate maximum possible order quantity to one supplier and give minimum order quantity to
other suppliers. Therefore, it can be concluded that when a supplier has enough capacity, it is an efficient strategy to order
maximum order quantity to one supplier, and keep the rest of the suppliers engaged in relationship by allocating minimum
possible order quantity.

7.3. Sensitivity analysis of suppliers’ capacity

As consideration of different capacity of all suppliers is one of the contributions of this work; therefore, we have per-
formed its sensitivity analysis to delve its effect on the final solution. To perform the sensitivity analysis, the values of de-

Table 2
GA results for order quantity allocation.

GA results

No. of
supplier

Suppliers Optimal value of Pop_size, Pc, Pm
and Gen.

Allocated order quantity PC SMC ELC Min.
ETC

1 [S3] 30, 0.4, 0.05, 50 [100] 670 20 240.0 930.0
2 [S1, S2] 30, 0.4, 0.05, 50 [10, 90] 739 40 80.20 859.2
3 [S1, S2, S3] 30, 0.4, 0.05, 50 [10, 10, 80] 736 60 24.78 820.7
4 [S1, S2, S3, S4] 30, 0.4, 0.05, 50 [10, 10, 70, 10] 769 80 16.88 865.8
5 [S1, S2, S3, S4, S5] 30, 0.4, 0.05, 50 [11, 10, 60, 10, 10] 802 100 15.0 917.2
6 [S1, S2, S3, S4, S5, S6] 30, 0.41, 0.06, 50 [10, 10, 50, 10, 10, 10] 835 120 15.0 970.0
7 [S1, S2, S3, S4, S5, S6, S7] 30, 0.4, 0.05, 50 [10, 10, 10, 10, 10, 40, 10] 932 140 15.0 1087.0
8 [S1, S2, S3, S4, S5, S6, S7, S8] 30, 0.4, 0.05, 50 [10, 10, 10, 10, 10, 10, 30, 10] 961 160 15.0 1136.0
9 [S1, S2, S3, S4, S5, S6, S7, S8,

S9]
30, 0.4, 0.05, 50 [10, 10, 20, 10, 10, 10, 10, 10,

10]
1000 180 15.0 1195.0

10 [S1, S2, S3, S4, S5, S6, S7, S8,
S9, S10]

30, 0.4, 0.05, 50 [10, 10, 10, 10, 10, 10, 10, 10,
10, 10]

1000 200 15.0 1215.0
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mand is considered 200 units and suppliers’ capacity are varied at four different levels while keeping the rest of the param-
eters fixed at their base value. The results of sensitivity analysis are presented in Table 6.

The case 1 in Table 6, depicts that when suppliers have sufficient same capacity and same price break quantity, discount
percentage and different failure probability, it allocates maximum possible order quantities to the supplier who has lower
failure probability. In case 2, we have observed an interesting result that when all the suppliers have same price break quan-
tity and discount percentage and different capacity and failure probability, it allocates more order quantity to the supplier
that has large capacity inspite of its higher failure probability. The buyer can get more compensation from the higher capac-
ity supplier. The case 3 shows that when suppliers’ have different capacity, price breaks, failure probability and discount per-
centage, it is better to allocate maximum possible order quantity to the suppliers with high discount in spite of his/her high
failure probability.

7.4. Sensitivity analysis of supplier management cost and loss per unit

Here, we have studied the effect of per supplier management and loss per units costs on demand allocation. To perform
sensitivity analysis, we varied the value of both these parameters at different level, while keeping rest of the parameters at
their base value. The sensitivity analysis results of both parameters are presented in Tables 7 and 8 respectively. The results
show that both parameters don’t have impact on demand allocation decision.

Table 3
Data set of suppliers for sensitivity analysis.

Supplier Failure probability (pi) Discount percentage dji

Low risk (LR) Medium risk (MR) High risk (HR) Low discount (LD) Medium discount (MD) High discount (HD)

S8 0.05 0.11 0.21 0.05, 0.09, 0.12 0.21, 0.25, 0.27 0.31, 0.33, 0.37
S9 0.05 0.11 0.21 0.05, 0.09, 0.12 0.21, 0.25, 0.27 0.31, 0.33, 0.37
S10 0.05 0.11 0.21 0.05, 0.09, 0.12 0.21, 0.25, 0.27 0.31, 0.33, 0.37

Table 4
Results of failure probability and price discount sensitivity analysis.

Demand Supplier Failure probability level Discount percentage level Allocated quantity ETC

S8 0.05 0.05, 0.09, 0.12 10
100 S9 Low 0.05 Low 0.05, 0.09, 0.12 10 979.19

S10 0.05 0.05, 0.09, 0.12 80

S8 0.11 0.21, 0.25, 0.27 40
100 S9 Medium 0.11 Medium 0.21, 0.25, 0.27 30 851.00

S10 0.11 0.21, 0.25, 0.27 30

S8 0.21 0.31, 0.33, 0.37 40
100 S9 High 0.21 High 0.31, 0.33, 0.37 30 770.89

S10 0.21 0.31, 0.33, 0.37 30

S8 0.05 Low 0.05, 0.09, 0.12 10
100 S9 Low 0.05 Medium 0.21, 0.25, 0.27 10 779.19

S10 0.05 High 0.31, 0.33, 0.37 80

S8 0.11 Low 0.05, 0.09, 0.12 10
100 S9 Medium 0.11 Medium 0.21, 0.25, 0.27 80 781.00

S10 0.11 High 0.31, 0.33, 0.37 10

S8 0.21 Low 0.05, 0.09, 0.12 10
100 S9 High 0.21 Medium 0.21, 0.25, 0.27 10 792.89

S10 0.21 High 0.31, 0.33, 0.37 80

S8 Low 0.05 0.05, 0.09, 0.12 10
100 S9 Medium 0.11 Low 0.05, 0.09, 0.12 10 980.73

S10 High 0.21 0.05, 0.09, 0.12 80

S8 Low 0.05 0.21, 0.25, 0.27 40
100 S9 Medium 0.11 Medium 0.21, 0.25, 0.27 30 850.73

S10 High 0.21 0.21, 0.25, 0.27 30

S8 Low 0.05 0.31, 0.33, 0.37 40
100 S9 Medium 0.11 High 0.31, 0.33, 0.37 30 758.73

S10 High 0.21 0.31, 0.33, 0.37 30

S8 Low 0.05 Low 0.05, 0.09, 0.12 10
100 S9 Medium 0.11 Medium 0.21, 0.25, 0.27 10 780.73

S10 High 0.21 High 0.31, 0.33, 0.37 80
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Table 5
Results of sensitivity of demand variation.

Demand Suppliers Failure probability level Discount percentage level Allocated order quantities ETC

S8 0.14 0.05, 0.09, 0.12 08
80 S9 0.11 0.23, 0.26, 0.28 64 695.75

S10 0.16 0.22, 0.24, 0.26 08

S8 0.14 0.05, 0.09, 0.12 10
100 S9 0.11 0.23, 0.26, 0.28 80 854.7

S10 0.16 0.22, 0.24, 0.26 10

S8 0.14 0.05, 0.09, 0.12 15
150 S9 0.11 0.23, 0.26, 0.28 60 1249.9

S10 0.16 0.22, 0.24, 0.26 75

S8 0.14 0.05, 0.09, 0.12 20
200 S9 0.11 0.23, 0.26, 0.28 100 1670.2

S10 0.16 0.22, 0.24, 0.26 80

S8 0.14 0.05, 0.09, 0.12 25
250 S9 0.11 0.23, 0.26, 0.28 100 2178.6

S10 0.16 0.22, 0.24, 0.26 125

S8 0.14 0.05, 0.09, 0.12 90
300 S9 0.11 0.23, 0.26, 0.28 90 2880.9

S10 0.16 0.22, 0.24, 0.26 120

Table 6
Results of sensitivity analysis of suppliers’ capacity.

Case
no

Suppliers Suppliers’
capacity

Failure
probability

Price break
quantity

Discount percentage
level

Allocated order
quantities

ETC

S8 200 0.14 70 100 130 0.10, 0.29, 0.37 20
1 S9 200 0.11 70 100 130 0.10, 0.29, 0.37 160 1534.2

S10 200 0.16 70 100 130 0.10, 0.29, 0.37 20

S8 100 0.14 70 100 130 0.10, 0.29, 0.37 20
2 S9 140 0.11 70 100 130 0.10, 0.29, 0.37 20 1553.8

S10 160 0.16 70 100 130 0.10, 0.29, 0.37 160

S8 200 0.14 70 100 130 0.10, 0.29, 0.37 20
3 S9 210 0.11 90 110 140 0.15, 0.25, 0.35 20 1473.4

S10 250 0.16 100 130 150 0.20, 0.27, 0.39 160

S8 120 0.14 50 70 90 0.10, 0.29, 0.37 100
4 S9 90 0.11 70 80 100 0.15, 0.25, 0.35 80 1595.9

S10 110 0.16 60 90 100 0.20, 0.27, 0.39 20

Table 7
Results of sensitivity analysis of per supplier management cost.

Per supplier management cost Suppliers Allocated order quantities ETC

S8 10
10 S9 10 680.69

S10 80

S8 10
20 S9 10 710.69

S10 80

S8 10
40 S9 10 770.69

S10 80

S8 10
60 S9 10 830.69

S10 80

S8 10
80 S9 10 890.69

S10 80

S8 10
100 S9 10 950.69

S10 80
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8. Conclusions

In this paper, we studied the optimal order allocation problem under supplier failure risk and quantity based price dis-
counts. The specific contributions of this paper to the relevant literature are as follows. First, a mixed integer non-linear pro-
gramming (MINLP) problem is developed considering different capacity, failure probability, price discounts and
compensation potential for each supplier. As far as we are aware, no such study is present in the literature that has consid-
ered all the aforementioned parameters together. Consideration of all these parameters together has made the problemmore
realistic but also at the same time more complex. Next, we have proved that the formulated problem is NP-hard in nature.
This type of problems is difficult to solve with any exact method for optimality. Therefore, non-traditional optimization tech-
nique genetic algorithm (GA) is used here to solve the problem. Finally, different numerical experiments are conducted to
illustrate the model and GA to find the solution of the problem.

The results of numerical study portray that the cost of supplier has more influence on order quantity allocation rather
than supplier’s failure probability. The supplier’s with high discount receives more order quantity as compared to other sup-
pliers. Further, it is found that if the price discounts of all suppliers are equal then the supplier with less failure probability
will get the maximum order quantity. The results suggest that allocation of maximum order quantity to one supplier of high
price discount and allocation of minimum order quantity to rest of the suppliers is the best strategy. Allocation of maximum
order quantity to the high discount providing supplier will reduce the cost and the buyer can keep lesser failure probability
suppliers as backup for emergency.

The results of sensitivity analysis depict that as the value of price discount increases, the allocation of order quantity
among all suppliers comes closer or equal in-spite of higher difference in failure probabilities of suppliers. It is found that
when a supplier has large capacity, it is efficient to order more quantity from one supplier. The results also reveal that when
all the suppliers have same price break quantity, the supplier with higher capacity receives maximum order quantity in spite
of its higher failure probability. Further, it is observed that management cost and loss per unit have no impact on demand
allocation decision.

In future, several interesting extensions are possible of this paper. Here, it is assumed that demand is deterministic. Con-
sideration of stochastic demand will be an interesting problem for future study. Further, it is assumed that the compensation
(i.e. extra quantity) provided by the supplier comes at no extra cost. However, in reality, supplier may charge higher cost for
supplying extra quantity. Finally, one can extend the model developed here for multi-periods and multi-items environment.
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