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a b s t r a c t 

This research studies a support vector machine (SVM)-based ensemble learning algorithm for breast can- 

cer diagnosis. Illness diagnosis plays a critical role in designating treatment strategies, which are highly 

related to patient safety. Nowadays, numerous classification models in data mining domains are adapted 

to breast cancer diagnosis based on patients’ historical medical records. However, the performance of 

each algorithm depends on various model configurations, such as input feature types and model param- 

eters. To tackle the limitation of individual model performance, this research focuses on breast cancer 

diagnosis that uses an SVM-based ensemble learning algorithm to reduce the diagnosis variance and 

increase diagnosis accuracy. Twelve different SVMs, based on the proposed Weighted Area Under the Re- 

ceiver Operating Characteristic Curve Ensemble (WAUCE) approach, are hybridized. To evaluate the per- 

formance of the proposed model, Wisconsin Breast Cancer, Wisconsin Diagnostic Breast Cancer, and the 

U.S. National Cancer Institute’s Surveillance, Epidemiology, and End Results (SEER) program breast cancer 

datasets have been studied. The experimental results show that the WAUCE model achieves a higher ac- 

curacy with a significantly lower variance for breast cancer diagnosis compared to five other ensemble 

mechanisms and two common ensemble models, i.e., adaptive boosting and bagging classification tree. 

The proposed WAUCE model reduces the variance by 97.89% and increases accuracy by 33.34%, compared 

to the best single SVM model on the SEER dataset. In practice, the proposed methodology can be further 

applied to other illness diagnoses, which offers an alternative to a safer, more reliable, and more robust 

illness diagnosis process. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

In 2011, a survey of about 187 countries’ breast cancer mortal- 

ity and incidence rates from 1980 to 2010 indicated that global 

breast cancer incidences increased from 641,0 0 0 cases in 1980 to 

1,643,0 0 0 cases in 2010, with an average annual increase rate of 

3.1% ( Forouzanfar et al., 2011 ). In particular, breast cancer is one of 

the leading cancer instances for women, which contributes 15% to 

total cancer deaths in 2015 in the United States ( Siegel, Miller, & 

Jemal, 2015 ). 

To tackle the dramatically increasing cancer rate, early detection 

approaches are widely discussed in many disease prevention stud- 

ies. Commonly used pre-diagnosis methods include annual mam- 

mography ( Ades et al., 2014 ), gene diagnosis ( Liu & Sotiriou, 2002 ), 

clinical diagnosis ( Sotiriou et al., 2003 ), etc. Moreover, with the de- 

velopment of biomedical technologies and information technolo- 

gies in recent years, various prognostic factors related to breast 

∗ Corresponding author. 
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cancer have been recorded, which enabled many researchers to 

develop more sophisticated early detection models using differ- 

ent data driven prediction methodologies, such as support vector 

machines (SVMs), logistic regression (LR), multilayer perceptrons 

(MLPs), and decision trees (DTs). 

In the domain of data mining, breast cancer prediction prob- 

lems are also considered as classification problems to classify be- 

nign and malignant tumors, which use various breast tumor mea- 

surements instead of conventional diagnostic lab tests, such as 

breast biopsy, positron emission tomography, and magnetic res- 

onance imaging ( Gupta, Kumar, & Sharma, 2011; Zheng, Yoon, & 

Lam, 2014 ). The classification performance depends on many fac- 

tors, such as input features, parameter settings, and model struc- 

tures. It is still challenging to find an effective strategy to obtain a 

good performance for general classification problems ( Friedrichs & 

Igel, 2005; Zheng et al., 2015 ). In particular, breast cancer diagno- 

sis is more important than ever because the classification results 

directly affect patients’ treatment and safety. It requires not only 

a high prediction of accuracy, but also a high reliability and ro- 

bustness, which is another challenge for data mining researchers. 

https://doi.org/10.1016/j.ejor.2017.12.001 

0377-2217/© 2017 Elsevier B.V. All rights reserved. 
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It is obvious that each algorithm has its advantages and limitations 

over different classification tasks ( Wolpert, 2002 ). One of the most 

popular methods is ensemble learning to leverage the strength of 

individual classifiers. While a good ensemble classifier can be built 

upon a number of weak bases, studies show that the property of 

base classifiers impacts the effectiveness of the ensemble outputs 

( Breiman, 1996 ). In this research, to compensate for the limita- 

tions and maximize the advantages of individual base classifiers, 

multiple structures of SVM models, known for high classification 

accuracy, are adopted to be hybridized as an ensemble learning 

model for breast cancer diagnosis. The proposed ensemble model 

includes two types of SVM structures, i.e., a C -SVM and a ν-SVM, 

and six types of kernel functions. To import the expertise of differ- 

ent base classifiers on diagnostic tasks, a Weighted Area Under the 

Receiver Operating Characteristic Curve Ensemble (WAUCE) mech- 

anism is proposed for model hybridization. The proposed model is 

further validated and evaluated based on two standard breast can- 

cer datasets, the Wisconsin Breast Cancer (WBC) dataset and the 

Wisconsin Diagnostic Breast Cancer (WDBC) dataset, and one prac- 

tical large scale dataset, the Surveillance, Epidemiology, and End 

Results (SEER) dataset, which was released by the U.S. National 

Cancer Institute through a cancer statistics program ( SEER, 2017 ). 

The rest of the paper is organized as follows: Breast cancer di- 

agnosis studies, related SVM, and ensemble learning methodolo- 

gies are reviewed and summarized in Section 2 . Section 3 provides 

a detailed discussion on the proposed method in terms of ensem- 

ble structure and diagnosis accuracy. By investigating SVM accu- 

racy surfaces, it is confirmed that the proposed model paradigm 

is quite necessary to overcome the influence of single model pa- 

rameter settings. Experimental results and analysis are presented 

in Section 4 . Conclusions and possible future research directions 

are explored in Section 5 . 

2. Literature review 

In the literature, various models have been designated to iden- 

tify breast cancer cases based on recorded clinical features, such 

as tumor sizes, texture behaviors, and uniformity of cell shapes. 

Among these methodologies, data-oriented machine learning mod- 

els provide a low cost clinical examination assistance for breast 

cancer diagnosis compared to other lab tests. In this section, com- 

mon data-oriented classifiers in the area of breast cancer diagno- 

sis are first summarized. SVM, as one of the effective classification 

method with high generalization performance as shown in many 

studies, is reviewed in the following subsection. Finally, recent en- 

semble learning techniques are further introduced for improving 

the classification accuracy over individual models. 

2.1. Common classifiers for breast cancer diagnosis 

Many basic data mining models, such as artificial neural net- 

works (ANNs), and DT models, have been applied to breast cancer 

diagnosis due to their cost effectiveness and high accuracy. Ravdin 

and Clark (1992) utilized neural network (NN) models to predict 

patient survival chances at different future time points by involv- 

ing time factors in prognostic variables. The performance of the NN 

was compared to a regression model on 1373 patients’ censored 

survival data, and achieved a similar accuracy level. Mangasarian, 

Street, and Wolberg (1995) designed a linear programming-based 

diagnostic system to predict malignant probabilities for nonrecur- 

ring cases and recurring time for recurring cases. Their model was 

tested on 569 patients using a cross-validation approach, and ob- 

tained 97.5% predicted accuracy. On top of a modified C4.5 deci- 

sion tree algorithm, Quinlan (1996) further improved the C4.5 clas- 

sifier accuracy to 94.74% by incorporating the Minimum Descrip- 

tion Length (MDL) penalty. By comparing a DT model (i.e., C5) with 

ANNs and LR on a large dataset (more than 20 0,0 0 0 cases), Delen, 

Walker, and Kadam (2005) found that the C5 model can achieve 

the best prediction accuracy by 93.6% more than the others for the 

holdout large dataset. 

Performance of a single learning algorithm can be impacted by 

different factors, such as feature space characteristics, algorithm 

parameters, and solution approaches. To systematically configure 

these parameters, many hybrid models have been proposed. Ravi 

and Zimmermann (20 0 0) combined feature selection and fuzzy 

systems together to select the critical features from a dataset 

for model performance improvement. In their model, a modified 

threshold accepting algorithm was proposed to minimize the num- 

ber of rules during model training process. Their model was tested 

on wine classification and the Wisconsin breast cancer determi- 

nation problems. Their results show that the proposed model can 

achieve high classification powers when working with fewer fea- 

ture variables. In addition to the hybrid with feature selection 

methods, feature extraction methods, such as principle component 

analysis (PCA), were also applied in their later work ( Ravi, Reddy, 

& Zimmermann, 20 0 0 ). To improve the prediction performance for 

a large dataset, a fuzzy decision tree (FDT), a hybrid DT and fuzzy 

rules, was proposed to estimate breast cancer recurrence for pa- 

tients ( Khan, Choi, Shin, & Kim, 2008 ). In their proposed model, 

a DT approach was used to generate fuzzy rules for a fuzzy in- 

ference system. The model was tested on the SEER dataset. It was 

noticed that the FDT model was more robust than individual mod- 

els ( Khan et al., 2008 ). By hybridizing NN models and associa- 

tion rules, Karabatak and Ince (2009) proposed an automatic breast 

cancer diagnostic system. In their model, association rules were 

utilized to reduce feature space and NN was used for classifica- 

tion. The model was tested on the WBC dataset, and their results 

show that the hybrid diagnostic system outperformed the single 

NN model on both effectiveness and efficiency ( Karabatak & Ince, 

2009 ). 

In most of the cases, model parameter setting is one of the crit- 

ical challenges that impacts model performance. Some works have 

also been conducted to combine meta-heuristic algorithms with 

data mining models to help model parameter tuning. To enhance 

the wavelet neural network training process, Chauhan, Ravi, and 

Chandra (2009) proposed a differential evolution trained wavelet 

neural network (DEWNN), where a differential evolution method 

was used to search the best parameter settings for a wavelet 

neural network. The DEWNN model was tested on three bank 

bankruptcy datasets and three standard datasets that included the 

WBC dataset. Their results show that DEWNN can achieve rela- 

tively high generalization ability. Naveen, Ravi, Rao, and Chauhan 

(2010) also combined the differential evolution method with other 

two algorithms, i.e., K -means, which performs data point central- 

ization, and a radial basis function (RBF) network, which is used 

as supervised learning. Their proposed model, differential evolu- 

tion trained radial basis function (DERBF) network, was compared 

to several existing models, such as DEWNN and threshold accept- 

ing trained wavelet neural network, on bank bankruptcy datasets 

and standard datasets, and obtained fairly high accuracy. 

In summary, most studies in the literature focused on either 

tuning model parameters, or performing feature extraction and/or 

selection to obtain better data representations. However, these 

studies did not put high emphasis on model structures, which 

might significantly affect the performance. Moreover, the param- 

eter tuning process, such as using differential evolution, may also 

lead to a potential risk of overfitting. 

2.2. Support vector machine for breast cancer diagnosis 

To account for model structure characteristics and overfitting is- 

sues, several novel model structures have been developed over the 



H. Wang et al. / European Journal of Operational Research 267 (2018) 687–699 689 

Fig. 1. Structure of SVM on a two dimensional feature space. 

last few decades. SVM, a group of margin classifier models pro- 

posed by Vapnik and his research group at AT&T Bell Laboratories 

in the 1990s, is one type of the effective models with high gener- 

alization ability in practice ( Cortes & Vapnik, 1995 ). Different from 

empirical risk minimization-based statistical learning methods, 

SVM aims to minimize structural risk, which demonstrates a strong 

capability in overfitting avoidance ( Ayat, Cheriet, & Suen, 2005 ). 

In the SVM model, decision hyperplanes are constructed based on 

identified support vectors to form a separation gap to divide two 

class instances with the maximal margin, as shown in Fig. 1 . 

Due to a widespread generalization ability of SVMs compared 

to conventional learning approaches, SVMs have been applied to 

many fields. In particular, as a data driven prediction technique, 

SVM models have attracted the most attention on illness diag- 

nosis in recent years, such as cerebral palsy gait diagnosis, gas- 

tric lymph node cancer detection, and prostate cancer diagnosis 

( Ishikawa, Takahashi, Takemura, Mizoguchi, & Kuwata, 2014; Kam- 

ruzzaman & Begg, 2006; Shah et al., 2012; Son, Kim, Kim, Choi, 

& Lee, 2010 ). SVM has been utilized for breast cancer diagnosis 

since the 1990s. Using the WBC dataset, Liu et al. (2003) analyzed 

the impact of SVM kernel functions and parameters on classifica- 

tion accuracy. Compared to K -means clustering, MLP, and proba- 

bility neural network (PNN), Liu et al. (2003) concluded that SVM 

had the best performance in diagnosing clinic breast cancer. An- 

other research work on diagnosis of breast cancer recurrence also 

demonstrated the outstanding performance of SVM over ANN, Cox- 

proportional hazard regression model, and three other prognostic 

models ( Kim et al., 2012 ), where the validation experiments were 

performed on 679 patient cases, those who underwent breast can- 

cer surgery between 1994 and 2002 in Korea. 

Although the SVM technique has shown its superiority in ac- 

curately diagnosing breast cancer, the performance can be further 

improved by optimizing its structures and parameter configura- 

tions. A Mixture of Rough set and Support vector machine (MRS) 

model, proposed by Zeng and Liu (2010) , reorganized sample space 

by rough set (RS) theory. Their model included two layers: the first 

layer applied RS theory to identify singular samples, and the sec- 

ond layer utilized an SVM model to classify the remaining samples. 

The MRS model was extended for the case by applying RS theory 

to remove redundant features in the feature selection process by 

Chen, Yang, Liu, and Liu (2011) . As a result, the number of features 

was reduced from ten to five on the WBC dataset. Instead of us- 

ing feature selection, Zheng et al. (2014) proposed a K -SVM model 

by hybridizing a K -means algorithm with SVM on breast cancer 

datasets ( Zheng et al., 2014 ). In their model, K -means was uti- 

lized to extract the abstract malignant and benign patterns. A sim- 

ilarity index, based on the comparison between the samples and 

the abstract patterns, was derived. The feature space for the SVM 

learning was reconstructed based on these similarity indexes. Their 

model achieved the highest accuracy, i.e., 97.38%, with the least 

CPU time on the WDBC dataset as compared to other heuristic- 

based feature selection methods ( Zheng et al., 2014 ). 

Although SVM obtains overall good performance, there are 

still some nontrivial parameters, such as kernel types, regulariza- 

tion parameters, and kernel parameters, which affect the perfor- 

mance of the individual SVM model. Heuristic techniques, such as 

gradient-based techniques ( Chapelle, Vapnik, Bousquet, & Mukher- 

jee, 2002 ), evolutionary algorithms ( Lorena & De Carvalho, 2008 ), 

and particle swarm optimization ( Gomes, Prudêncio, Soares, Rossi, 

& Carvalho, 2010 ), have been put into the SVM parameter selec- 

tion procedure. Even though the heuristic optimization process fine 

tunes the parameter values for SVM models, the search process is 

time consuming and may terminate with local optima. It also can- 

not exceed the structure limitation of an individual SVM. 

2.3. Ensemble learning for classification 

Ensemble learning was initially proposed for reducing classi- 

fication bias and variance. Bias is defined as a systematic error 

of a learning algorithm and is impacted by the algorithm itself 

( Rosales-Pérez, Escalante, Gonzalez, Reyes-Garcia, & Coello, 2013 ). 

Variance describes random errors, which are caused by the un- 

certainty of training data or learning algorithm settings. Generally, 

low bias models may cause overfitting issues, which limit the ca- 

pability of models to classify new instances, while low variance 

models may suffer from underfitting problems, which may cause 

them to lose their accuracy. Through bias and variance analyses, 

researchers proposed different methods to decompose and reduce 

classification errors ( Neville & Jensen, 2008; Rosales-Pérez et al., 

2013 ). Moreover, to balance the influence from bias and variance in 

classification tasks, ensemble learning is considered as one of the 

most effective strategies. Essentially, ensemble methods aggregate 

different algorithms together for a comprehensive decision. There 

were several ensemble learning paradigms proposed in the liter- 

ature, such as boosting algorithms, bagging, and windowing. The 

basic idea of boosting is to dynamically adjust the training process 

to focus more on those cases that caused errors. To achieve the 

aim, each training sample is assigned a weight. The whole train- 

ing process tends to concentrate on “hard” instances through up- 

dating weights accordingly. The boosting algorithm combines many 

base classifiers into a single final classifier through weights, which 

tends to reduce bias ( Schapire & Freund, 2012 ). An SVM-based 

boosting method is also discussed in the literature. Li, Wang, and 

Sung (2008) implemented an RBF-based SVM in adaptive boosting 

(AdaBoost) algorithm and proposed AdaBoostSVM. The model is 

compared with DT-based and NN-based boosting on several stan- 

dard datasets. Their results show that the AdaBoostSVM model per- 

forms better than other AdaBoost models with base classifiers DTs 

and NNs. However, studies showed that AdaBoost with strong base 

classifiers is not viable ( Wickramaratna, Holden, & Buxton, 2001 ). 

To embed a RBF-based SVM in AdaBoost, the researchers weaken 

the SVM model by adaptively adjusting the kernel parameter σ
when boosting proceeds ( Li et al., 2008 ). Even though their ex- 

perimental results showed that AdaBoostSVM could obtain a good 

performance, the AdaBoostSVM structure did not fully utilize the 

capability of SVM, which is a sacrifice for SVM. Another widely 

used ensemble paradigm is bagging, which utilizes a hybrid boot- 

strap sampling technique and aggregates the choices from various 

base classifiers. Bagging models have an advantage to reduce vari- 

ance. Breiman (1996) showed that bagging can reduce classifica- 

tion errors by 20% on average; however, Breiman also showed that 
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bagging could reinforce good classifiers, but make poor classifiers 

worse. 

In the ensemble learning process, several high performance en- 

semble models have been studied in literature. Especially, Receiver 

Operating Characteristics (ROC) curve was applied as a compre- 

hensive classifier performance criterion to replace accuracy in 

ensemble learning tasks ( Gao, Lee, & Lim, 2006; Levesque, Durand, 

Gagne, & Sabourin, 2012 ). Studies have shown that the Area under 

the ROC (AUC)-based learning process can refine the traditional 

model parameter tuning procedure ( Gao & Sun, 2007 ). Gao et al. 

(2006) proposed an ensemble maximal figure-of-merit (E-MFoM) 

model based on ROC optimization. The E-MFoM model integrated 

a statistical sampling technique to optimize a particular operating 

point on the ROC curve of each linear discriminant function. Their 

results show that E-MFoM learning achieves better classification 

results compared to state-of-the-art ROC optimization models. As 

a modification, Levesque et al. (2012) proposed a multi-objective 

evolutionary optimization method to train ensemble learning. In 

their method, false positive and true positive rates were formu- 

lated as two objectives. Then, a Non-Dominated Sorting Genetic 

Algorithm II (NSGA-II) was applied in the training procedure. Their 

results were compared with the best single classifiers in the liter- 

ature and several ensemble structures by applying commonly used 

base classifiers, such as SVM, linear discriminant, and expression 

trees. Their results show that the multi-objective mechanism can 

obtain better performance compared to previous approaches in 

the literature. The research in literature indicates that ROC curves 

can be applied as a more effective criteria to evaluate classifier 

performance compared to traditional single measures, such as 

accuracy. However, those studies focused mainly on applying ROC 

curves in the model parameter tuning process and did not take 

into consideration how to combine the decisions from existing 

tuned base classifiers. In addition, evaluating ROC curves for 

objective functions in each training step requires a high cost of 

computation and memory. 

As described previously, a single SVM, as one of the low bias 

classifiers, has been well studied for breast cancer diagnosis. SVMs 

have demonstrated their superior capability in breast cancer diag- 

nosis. ROC curves have shown their abilities to optimize the pa- 

rameter tuning process. However, limited research has been fo- 

cused on using the ensemble learning approach to further improve 

SVM-based breast cancer diagnosis. Based on the nature of ensem- 

ble learning, there is room for overcoming the limitation of an in- 

dividual SVM due to its singular structure type and variance. 

3. Methodology 

In this section, the proposed SVM-based ensemble algorithm 

is explained in detail. There are two main components in the 

proposed methodology: individual SVM classifiers and ensemble 

methods. Regarding various basic kernels of SVMs, the perfor- 

mance of each base model is investigated to show the impact 

of model parameters on model accuracy. Based on the individual 

SVM’s performance, the Weighted Area Under the Receiver Operat- 

ing Characteristic Curve Ensemble (WAUCE) approach is proposed 

to leverage the strength and compromise the weakness of individ- 

ual SVMs. The effectiveness of WAUCE is further compared with 

other ensemble strategies. 

3.1. Kernel-based SVMs 

Initially, SVMs are formulated as quadratic optimization prob- 

lems, which can solve only linear separable classification cases. Us- 

ing Lagrange multipliers, an inner product space is introduced into 

the dual form of the optimization model, which can extend linear 

to nonlinear SVM via feature mapping by kernel functions. Sup- 

pose Y is the binary output set, i.e., ϒ = {−1 , +1 } , χn is a n - 

dimensional feature space, and τ is the training set size. Given 

a training dataset D = { (x i , y i ) : x i ∈ χn , y i ∈ ϒ, i = 1 , . . . , τ } , the 

dual form of a C -SVM model is given by 

C − SVM : max 
α

−1 

2 

τ∑ 

i, j=1 

αi α j y i y j κ(x i · x j ) + 

τ∑ 

i =1 

αi (1) 

s.t. 0 ≤ αi ≤ C ∀ i (2) 

τ∑ 

i =1 

αi y i = 0 (3) 

where αi denotes Lagrange multipliers, κ represents kernel func- 

tion, and parameter C is a regularization term, which is used to 

balance structural and empiric risks ( Cawley, 2001 ). Eqs. (1) –(3) 

are also called C -SVM, which can tolerate input noise in a dataset 

by adjusting parameter C . Another SVM model used in this re- 

search is ν-SVM, as shown in Eqs. (4) –(7) , where ν ∈ [0, 1] con- 

trols the upper bound on the fraction of margin error, and it also 

determines the lower bound of the fraction of support vectors 

( Schölkopf, Smola, Williamson, & Bartlett, 20 0 0 ). By adjusting pa- 

rameter ν , the ν-SVM model gives another aspect of margin error 

control ( Chen, Lin, & Schölkopf, 2005 ). 

ν − SVM : max 
α

−1 

2 

τ∑ 

i, j=1 

αi α j y i y j κ(x i · x j ) (4) 

s.t. 0 ≤ αi ≤
1 

τ
∀ i (5) 

τ∑ 

i =1 

αi y i = 0 (6) 

τ∑ 

i =1 

αi ≥ ν (7) 

By applying an inner product between any two points in a given 

feature space, χn , and transferring features to a higher dimen- 

sional space, a kernel method can linearly separate highly inter- 

meshed overlapping data points in the new space. Feature map- 

ping is achieved by using kernel functions, as follows: 

(x i , x j ) � −→ κ(x i , x j ) , (8) 

by satisfying 

κ(x i , x j ) = 〈 	(x i ) , 	(x j ) 〉 , (9) 

where 	( x ) denotes the mapping function. 

Commonly used kernel functions include the linear kernel, the 

polynomial kernel, and the Gaussian radial basis function (RBF) 

kernel, etc. This research also includes the Laplacian kernel, the 

Hyperbolic tangent (HT) kernel, and the ANOVA RBF kernel. The 

kernel functions and their commonly used default parameter set- 

tings are provided in Table 1 . 

Fig. 2 shows the accuracy surfaces for the C -SVM and ν-SVM 

models based on three kernel functions using the WDBC dataset by 

10-fold cross-validation. The details of the dataset are illustrated in 

Table 4 . Fig. 2 (a) and 2 (c) show that the classification accuracy of 

the C -SVM is reduced when the regularization term ( C ) becomes 

extremely small. On the contrary, the kernel parameter ( σ ) plays 

a more important role than the regularization term for a relatively 

large regularization value. For the polynomial kernel, degree ( r ) has 

greater impact on model accuracy than C because the surface is 
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Fig. 2. Classification accuracy surfaces for C -SVM and ν-SVM models. 

Table 1 

Kernel functions and default parameters for model selection. 

Kernel type Functions Default parameters 

RBF κr (x i , x j ) = exp (−σ || x i − x j || 2 ) σ = 1 

Polynomial κp (x i , x j ) = [ 〈 x i , x j 〉 + 1] r r = 1 

Linear κl (x i , x j ) = 〈 x i , x j 〉 / 

Laplacian κlap (x i , x j ) = exp (−σ || x i − x j || ) σ = 1 

HT κt (x i , x j ) = tanh (〈 x i , x j 〉 + b) b = 1 

ANOVA RBF κa (x i , x j ) = ( 
∑ s 

k =1 exp (−σ (x k 
i 
− x k 

j 
) 2 )) d σ = 1 , d = 1 

almost parallel along log ( C ) axis, as shown in Fig. 2 (e). Regarding 

the ν-SVM, the accuracy surfaces have different representations. 

The prediction accuracy fluctuates significantly, when kernel pa- 

rameter σ becomes small for RBF- and Laplacian-based kernels, as 

shown in Fig. 2 (b) and 2 (d). In particular, the ν-SVM has relatively 

high accuracy on the overall parameter region for the Laplacian 

kernel, but there are some potentially risky points in the high ac- 

curacy region, as shown in Fig. 2 (d). The Polynomial kernel-based 

ν-SVM has a much smoother accuracy surface, and no very flat and 

steep region appearance, as shown in Fig. 2 (d). Moreover, ν-SVM 

accuracy tends to decrease while either increasing degree or ν un- 

der the Polynomial kernel. 

SVM accuracy surfaces in Fig. 2 reveal the fact that various pa- 

rameter settings in SVM models can significantly affect the clas- 

sification accuracy. Particularly, the classification accuracy varies 

due to the different options of kernel functions and the structure 

of SVMs. The experimental results indicate that the two types of 

SVMs achieve different best classification accuracy under different 

parameter settings. In other words, the individual SVM may have 

its upper limit of accuracy due to the nature of the SVM struc- 

ture. Potential improvement can be achieved by aggregating vari- 
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Table 2 

Confusion matrix. 

Predicted class 

Positive Negative 

Actual class Positive TP FN 

Negative FP TN 

ous SVM models together to reduce the weakness of an individual 

SVM, especially due to the singular SVM structure. 

3.2. Ensemble SVM learning 

Two SVM paradigms with six kernel functions are combined in 

the proposed SVM-based model to increase the diversities of base 

models in the ensemble structure. For the purpose of comparisons, 

ensemble SVM learning models are also implemented using five 

different fusion mechanisms for further validation of the effective- 

ness of WAUCE. 

3.2.1. Area Under the Receiver Operating Characteristic Curve (AUC) 

A confusion matrix is one of the common approaches to mea- 

sure performance for classification models. In a confusion matrix, 

the two classes are identified as positive class (+1) and negative 

class (−1) . As shown in Table 2 , each predicted class is compared 

with its actual class for each instance to calculate four metrics: 

• True Positives (TP) – the number of positive instances that is 

correctly classified as positive classes. 
• False Positives (FP) – the number of negative instances that is 

incorrectly classified as positive classes. 
• True Negatives (TN) – the number of negative instances that is 

correctly classified as negative classes. 
• False negatives (FN) – the number of positive instances that is 

incorrectly classified as negative classes. 

Based on the confusion matrix, other performance measures 

can be derived as follows: 

Error: e = 

F N + F P 

T N + T P + F N + F P 
, (10) 

Accuracy: a = 

T N + T P 

T N + T P + F N + F P 
= 1 − e, (11) 

Sensitivity: r = 

T P 

T P + F N 

, (12) 

Specificity : s = 

T N 

F P + T N 

. (13) 

Based on Eq. (10) , it is obvious that a classification model er- 

ror is shown from only FN and FP. Given two classes, i.e., benign 

(B) and malignant (M), the FN and FP rates are impacted by set- 

ting up different threshold values as shown in Fig. 3 (a), where the 

horizontal axis is a feature measure, such as the number of abnor- 

mal cells. By moving the decision threshold, the FP and FN areas 

keep changing, and it is impossible to minimize FN and FP rates 

simultaneously. However, the TP, FP, TN, and FN measures can be 

collected to construct a plot, which is a Receiver Operating Char- 

acteristic (ROC) curve, to show the tradeoff of FN and FP rates to 

model classification errors. As shown in Fig. 3 (b), ROC curves are 

typically plotted using FP rate vs. TP rate ( Bradley, 1997 ). Based on 

the ROC curve, AUC can be calculated. Suppose 1 − s and r are the 

probabilities of FP and TP, respectively. Then, AUC can be estimated 

by trapezoidal integration, which is expressed as Eq. (14) ( Bradley, 

1997 ) 

AUC = 

∑ 

γ

{ 

[ r γ · �(1 − s )] + 

1 

2 
[�r · �(1 − s )] 

} 

(14) 

where �(1 − s ) = (1 − s ) γ − (1 − s ) γ −1 , �r = r γ − r γ −1 , and γ
is an index. In practical applications, the distribution of features 

for different classes can vary in different shapes. Fig. 3 (c) shows 

an example where the distribution of the average number of con- 

cave points of the cell nuclei contour is unimodal for benign cases 

but bimodal for malignant cases in digitized images of a fine nee- 

dle aspirate ( Mangasarian et al., 1995 ). If a threshold-based di- 

agnostic model is built based on the average number of con- 

cave points, the ROC, as shown in Fig. 3 (d), can be obtained by 

varying the model configurations. Based on trapezoidal integra- 

tion, AUC of the threshold-based model is approximately 78.59%, 

which is a comprehensive evaluation of model structure. Obvi- 

ously, AUC is an ensemble evaluation of a classification model 

performance, which can provide more information than a single 

accuracy measurement. In this research, the AUC information is 

used in the ensemble weighting process to enhance breast cancer 

diagnosis. 

3.2.2. Weighted Area Under the ROC Curve Ensemble (WAUCE) 

Given an input feature vector x ∈ χn , a classification result 

h η( x ) ∈ Y is obtained based on each base classifier h η ∈ B , where B is 

the base classifier set B = { h η : η = 1 , . . . , m } , and m is the number 

of base classifiers. The aim of the ensemble learning is to create 

an enhanced composite classifier, H ( x ), through amalgamating di- 

agnoses from the different base SVM models into one single deci- 

sion. The structure of the ensemble learning algorithm is presented 

as Algorithm 1 . A sampling with replacement approach is used 

Algorithm 1 Weighted Area Under the ROC Curve Ensemble 

(WAUCE). 

1: Training dataset D = { (x i , y i ) : x i ∈ χn , y i ∈ ϒ, i = 1 , . . . , τ } 
2: B = { h η : η = 1 , . . . , m } 
3: F (x , h ) 

4: procedure Ensemble ( D, B, F ) 

5: for η = 1 , . . . , m do 

6: S η = Sampling(D ) 

7: h η ← h η(S η) 

8: H(x ) = F (x , h 1 , . . . , h m 

) 

9: return H(x ) 

here to construct different base classifiers. To train a base classi- 

fier, a subsample is selected from the original dataset using the 

sampling with replacement approach in each iteration. F ( x , h ) in 

Algorithm 1 represents a fusion strategy, which is used in ensem- 

ble learning to aggregate the decisions from different classifiers. 

Major voting is a typical fusion strategy in many studies. However, 

majority voting considers the decision from each classifier equally, 

and neglects the influence from those low accuracy classifiers. To 

overcome the shortcoming of majority voting, weighted fusion ap- 

proaches were also applied. The typical format of weighted fusion 

is given as Eq. (15) . 

H(x ) = F 

[ 

m ∑ 

η=1 

w ηh η(x ) 

] 

(15) 

where w η is the weight for each base classifier. In the proposed 

model, the AUC is used as w η for the SVM ensemble, i.e., WAUCE. 

In particular, five commonly used additional fusion strategies are 

provided to compare the effectiveness of the WAUCE model. 
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Fig. 3. ROC curve and AUC. 

• Weighted Area Under the ROC Curve Ensemble (WAUCE) 

The AUC performance metric is used to weigh different diagno- 

sis results from base classifiers in the WAUCE model. The strat- 

egy can be expressed mathematically as Eq. (16) . 

H(x ) = 

{ −1 
∑ m 

η=1 w ηh η(x ) < 0 

+1 Otherwise (16) 

where w η = 

AUC η∑ m 
j=1 AUC j 

, ∀ η . 

• Majority Voting Ensemble (MVE) 

MVE is also called plurality vote (PV) or the basic ensem- 

ble method (BEM), which is widely used in many applications 

( Rokach, 2010 ). The MVE can be expressed as Eq. (17) . 

H(x ) = arg max ∀ c∈ ϒ

{ 

m ∑ 

η=1 

I[ h η(x ) , c] 

} 

(17) 

where h η( x ) is the classification result for the ηth base classi- 
fier, and I ( h , c ) denotes an indicator function, which is defined 

as Eq. (18) in this paper. 

I(h, c) = 

{ +1 h = c 
−1 h � = c (18) 

• Maximum Ensemble (MaxE) 

MaxE always selects the largest decision value from the base 

model set to make the final decision, which can be expressed 

mathematically as Eq. (19) . 

H(x ) = max { h η(x ) : η = 1 , . . . , m } (19) 

• Minimum Ensemble (MinE) 

Opposite to MaxE, the MinE always applies the smallest deci- 

sion value in the base model set to provide the final decision, 

which can be expressed mathematically as Eq. (20) . 

H(x ) = min { h η(x ) : η = 1 , . . . , m } (20) 

• Weighted Accuracy Ensemble (WAE) 

The final decision for WAE is based on a comprehensive eval- 

uation of all the base model decision results through accuracy- 

based weighting. Training accuracies are used to weigh differ- 

ent diagnosis results. The strategy can be expressed mathemat- 

ically as Eq. (21) . 

H(x ) = 

{ −1 
∑ m 

η=1 w ηh η(x ) < 0 

+1 Otherwise (21) 

where w η = 

a η∑ m 
j=1 a j 

, ∀ η, and a η is the training accuracy of the 

ηth base classifier. 
• Single Best (SB) 

In addition, the five fusion strategies are compared with the 

best individual base SVM model during each experimental test. 

For the SB model, the final decision is made based on the base 

model with the highest training accuracy, which can be ex- 

pressed mathematically as Eq. (22) . 

H(x ) = h �(x ) , � = arg max η{ a η : η = 1 , . . . , m } (22) 

4. Experiment results and analysis 

To further evaluate the proposed model for generalization, sev- 

eral experiments are conducted and analyzed in detail to explore 

the actual improvements. 

4.1. Data description 

To test the effectiveness of the proposed ensemble SVM struc- 

tures for breast cancer diagnosis, two standard breast cancer 

datasets are applied. The two datasets were collected from the 

University of Wisconsin Hospitals, Madison by Mangasarian et al. 

(1995) . In addition, to demonstrate how the proposed WAUCE 

method performs on practical large scale, modern datasets, a latest 

version SEER breast cancer dataset ( SEER, 2017 ) is also tested in 

this section. A brief description of each dataset is given as follows: 

• Wisconsin Original Breast Cancer (WBC) Dataset 
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The WBC dataset includes 699 observations (65.52% benign, 

34.48% malignant). Sixteen instances that include missing val- 

ues for attribute bare nuclei are removed from the dataset dur- 

ing data preprocessing. The distribution of each feature is sum- 

marized as Table 3 . 
• Wisconsin Diagnostic Breast Cancer (WDBC) Dataset 

There are 569 instances (62.74% benign, 37.26% malignant) and 

32 patient attributes, which include a patient ID, 30 tumor fea- 

tures, and one class indicator in the WDBC dataset. Tumor fea- 

tures were collected from 10 aspects: radius, texture, perime- 

ter, area, smoothness, compactness, concavity, concave points, 

symmetry, and fractal dimension. These features were collected 

from a digitized image of a fine needle aspirate (FNA) of a 

breast mass. The mean, standard error, and “worst” or “largest”

of these features were computed for each image, which resulted 

in a total of 30 features. A summary of the attributes is given 

in Table 4 . 
• SEER Breast Cancer Dataset 

This is a dataset collected by National Cancer Institutes Surveil- 

lance, Epidemiology, and End Results (SEER) program. The pro- 

gram is responsible for collecting incidence and survival data 

related to cancer at nine anatomical sites, e.g., breast, colon and 

rectum, urinary tract. The dataset is publicly available and can 

be accessed by signing a research data agreement. The latest 

version, submitted in November 2016, includes more than 9.6 

million cancer instances from 1973 to 2014. The breast cancer 

dataset, which includes 80 0,0 0 0 instances, is used in this study 

( SEER, 2017 ). In the dataset, there are 133 variables to record 

the patient information from different perspectives, such as ge- 

ographic area, race, and stage of cancer. 

In this research, 14 features are used as predictors ( Delen et al., 

2005 ). However, some of the variables applied to describe pa- 

tient statuses contain many missing values, such as tumor size 

and number of lymph nodes examined, due to coding changes. 

To avoid the impact of coding system changes, only the in- 

stances with the diagnosis year after 2004 are used. In addi- 

tion, the logic applied to determine survivability of breast can- 

cer patients from the SEER dataset is based on three variables: 

Table 3 

Summary of attributes for WBC. 

Attributes Domain Mean SD 

Clump thickness 1–10 4.44 2.82 

Uniformity of cell size 1–10 3.15 3.07 

Uniformity of cell shape 1–10 3.22 2.99 

Marginal adhesion 1–10 2.83 2.86 

Single epithelial cell size 1–10 3.23 2.22 

Bare nuclei 1–10 3.54 3.64 

Bland chromatin 1–10 3.45 2.45 

Normal nucleoli 1–10 2.87 3.05 

Mitoses 1–10 1.60 1.73 

Table 4 

Range of each attributes in WDBC. 

Attributes Range 

Mean Standard error Largest value 

Radius 6.98–28.11 0.11–2.87 7.93–36.04 

Texture 9.71–39.28 0.36–4.89 12.02–49.54 

Perimeter 43.79–188.50 0.76–21.98 50.41–251.20 

Area 143.50–2501.00 6.80–542.20 185.20–4254.00 

Smoothness 0.05–0.16 0.00–0.03 0.07–0.22 

Compactness 0.02–0.35 0.00–0.14 0.03–1.06 

Concavity 0.00–0.43 0.00–0.40 0.00–1.25 

Concave points 0.00–0.20 0.00–0.05 0.00–0.29 

Symmetry 0.11–0.30 0.01–0.08 0.16–0.66 

Fractal dimension 0.05–0.10 0.00–0.03 0.06–0.21 

Table 5 

Range of each attributes for the preprocessed SEER breast 

cancer dataset. 

Categorical Attributes Number of unique values 

Race 28 

Marital status 6 

Primary site code 9 

Histology 88 

Behavior 2 

Grade 5 

Extension of disease 27 

Lymph node involvement 7 

Stage of cancer 4 

Site specific surgery code 46 

Continuous Attributes Mean SD Range 

Age 58.38 12.68 13–98 

Tumor size 20.76 18.12 0–200 

Number of positive nodes 1.08 3.00 0–84 

Number of nodes 6.96 6.98 1–90 

survival months, vital status recode, which describes whether 

or not the patient is alive as of the cut-off date, and cause of 

death. Those patients who survive for 60 months (five years) 

and are still alive after diagnosis are defined as survived. For 

those cases with the surviving months of fewer than 60 months 

and the cause of death as breast cancer, they are defined as not 

survived ( Kate & Nadig, 2017 ). Given that survivability is de- 

fined as surviving for 60 months after diagnosis, the instances 

that were diagnosed as fewer than 60 months from the lat- 

est year of submission are excluded. After the data cleansing 

and data preparation, 82,707 instances, which include 76,716 

positive and 5991 negative instances, are obtained. A summary 

of the variables is given in Table 5 . To avoid the influence of 

dataset unbalance, a sampling without replacement approach is 

used to randomly undersample the positive class. 

4.2. Design of experiments 

During the tests, a k -fold cross-validation approach is applied to 

estimate the generalization error for constructed models ( Levesque 

et al., 2012 ). The k -fold cross-validation includes K iterations. The 

whole dataset is split into K roughly equal-sized partitions. In the 

k th iteration, a model is trained based on remaining K − 1 parti- 

tions and tested using the k th partition to get testing performance 

P k . The overall performance in k -fold cross-validation is averaged 

based on these results from K iterations, as shown in Eq. (23) . 

P̄ = 

1 

K 

K ∑ 

k =1 

P k (23) 

where P k is a performance metric from a , r , s , or AUC for k th par- 

tition. 

In addition, to compare the reliability of the ensemble models, 

variance is measured based on standard deviation ( σ ), which is de- 

fined as Eq. (24) . 

σ (P ) = 

√ 

1 

L − 1 

L ∑ 

l=1 

( ̄P l − ¯̄P ) 2 (24) 

where L is the number of replications. 

In the experimental test, 12 SVMs ( m = 12 , i.e., C -SVM and ν- 
SVM with six kernel functions, respectively) are included together 

in the ensemble process. The kernel related parameters of each 

base model are set as default as given in Table 1 . In the exper- 

imental tests, C and ν are set as 1 and 0.2 for C -SVM and ν- 
SVM, respectively. Ten-fold cross-validation ( K = 10 ) is repeated 

with five replications ( L = 5 ) for each model. The performance 

of the WAUCE model is compared with the other five SVM-based 
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Table 6 

Diagnosis accuracy and model training time comparisons on the WBC dataset. 

Models 

Accuracy 

( a ) (%) 

Specificity 

( s ) (%) 

Sensitivity 

( r ) (%) AUC (%) 

Training time 

(seconds) (SD) 

MVE 96.86 96.92 96.70 96.81 0.46 (0.014) 

MaxE 94.51 92.06 99.36 95.71 0.46 (0.005) 

MinE 94.79 97.87 89.15 93.51 0.45 (0.006) 

WAE 97.08 97.16 97.06 97.11 0.50 (0.008) 

SB 96.62 97.18 95.74 96.46 0.50 (0.006) 

AdaBoost 96.09 97.05 94.40 95.73 0.39 (0.013) 

BCT 95.59 96.55 93.85 95.20 0.35 (0.006) 

WAUCE 97.10 97.23 97.11 97.17 0.53 (0.005) 

Table 7 

Diagnosis accuracy and model training time comparisons on the WDBC dataset. 

Models 

Accuracy 

( a ) (%) 

Specificity 

( s ) (%) 

Sensitivity 

( r ) (%) AUC (%) 

Training time 

(seconds) (SD) 

MVE 97.15 99.39 93.32 96.36 0.76 (0.016) 

MaxE 89.65 84.19 98.63 91.41 0.82 (0.013) 

MinE 89.64 99.95 72.67 86.31 0.82 (0.009) 

WAE 97.54 99.43 94.49 96.96 0.92 (0.006) 

SB 96.77 98.64 93.59 96.12 0.82 (0.014) 

AdaBoost 95.86 97.35 93.46 95.40 0.48 (0.004) 

BCT 94.00 96.10 90.54 93.32 0.49 (0.020) 

WAUCE 97.68 99.49 94.75 97.12 0.87 (0.040) 

Table 8 

Diagnosis accuracy and model training time comparisons on the SEER dataset. 

Models 

Accuracy 

( a ) (%) 

Specificity 

( s ) (%) 

Sensitivity 

( r ) (%) AUC (%) 

Training time 

(seconds) (SD) 

MVE 75.56 77.53 73.59 75.56 292.91 (1.673) 

MaxE 50.12 0.25 99.97 50.11 304.72 (1.754) 

MinE 50.08 99.97 0.18 50.08 294.35 (2.793) 

WAE 76.30 72.65 79.93 76.29 355.78 (14.405) 

SB 57.31 45.90 68.91 57.40 356.44 (16.803) 

AdaBoost 75.54 75.52 75.62 75.57 3.82 (0.050) 

BCT 75.54 75.52 75.62 75.57 3.01 (0.106) 

WAUCE 76.42 72.80 80.02 76.41 355.78 (14.404) 

ensembles. In addition, two typical ensemble models, AdaBoost 

( Freund, Schapire et al., 1996 ) and Bagging Classification Trees 

(BCT) (Breiman, 1996) are also tested to compare with the WAUCE 

model under the same experiment conditions. The number of base 

trees in AdaBoost and BCT is set as 12, respectively. Performance 

of each model is estimated using WBC, WDBC, and SEER datasets 

without feature selection and feature extraction. In the experimen- 

tal tests, R packages are used for the implementation of base SVM 

models, and the ensemble structure is coded in R language. All the 

experimental tests are performed on a 64-bit Windows 10 with 

Intel i7 processor (4.00 gigahertz) and 16 gigabyte random-access 

memory (RAM). 

4.3. Experimental results 

The performance of the proposed model is evaluated from three 

aspects: effectiveness im provement; reliability improvement; and 

the improvement over existing works. 

• Analysis of diagnosis accuracy and training efficiency 

During each test, the accuracy ( a ), specificity ( s ), sensitivity ( r ), 

and AUC for WBC, WDBC and SEER datasets are collected and 

summarized in Tables 6 –8 for the eight models, respectively. 

The top two highest values are highlighted in bold for each per- 

formance measure in each table. To compare training efficiency, 

training times are also provided in the last column of each ta- 

ble. 

For small size datasets, i.e., WBC and WDBC, the comparison 

results of each model with the proposed model show that the 

Table 9 

Diagnosis variance comparisons on the WBC dataset. 

Models σ ( a ) (%) σ ( s ) (%) σ ( r ) (%) σ (AUC) (%) 

MVE 0.39 0.50 0.21 0.33 

MaxE 0.39 0.50 0.21 0.33 

MinE 0.38 0.33 1.01 0.50 

WAE 0.19 0.29 0.18 0.14 

SB 0.26 0.44 0.66 0.25 

AdaBoost 0.38 0.58 0.75 0.35 

BCT 0.46 0.39 0.73 0.49 

WAUCE 0.08 0.16 0.33 0.11 

proposed WAUCE model structure always outperforms others in 

terms of accuracy and AUC. The best average accuracy achieved 

by the WAUCE model is 97.68% on the WDBC dataset. In par- 

ticular, SB represents the best performance level that individ- 

ual SVM classifiers can achieve, and WAUCE outperforms SB 

for all the performance metrics on both datasets. Especially, 

WAUCE, as well as the basic MVE, is better than BCT for all 

the performance metrics on both datasets, which indicates that 

the proposed SVM-based bagging is better than DT-based bag- 

ging, which also supports the initial objective of this research 

to improve the ensemble process using high performance base 

classifiers. MaxE and MinE outperform other models in terms 

of specificity or sensitivity due to their biased diagnosis. For 

instance, MaxE improves the sensitivity while sacrificing the 

specificity significantly. In other words, it gives many false pos- 

itive diagnoses of breast cancer in the testing experiments. The 

WAUCE model balances the performance and obtains high per- 

formance on both sensitivity and specificity. In short, WAUCE 

outperforms other methods in terms of accuracy and AUC mea- 

sures. It implies that the AUC-based weight strategy can effec- 

tively improve the breast cancer diagnosis accuracy. 

For the SEER breast cancer dataset, the proposed WAUCE model 

obtains the highest accuracy and AUC, which indicates the abil- 

ity of using WAUCE for practical large data size breast cancer 

diagnosis. MinE manifests the highest specificity, i.e., 99.97%, to 

diagnose negative cases correctly, but can diagnose only pos- 

itive cases with sensitivity 0.18%, which indicates its seriously 

biased diagnostic performance for the large dataset. In practice, 

the MinE model may miss numerous malignant breast cancer 

cases due to its low sensitivity. A similar result can also be 

found for the MaxE model. Overall, the best average accuracy 

is achieved as 76.42% by the WAUCE model, which is 33.34% 

improvement compared to the single best model. 

In terms of training efficiency, DT-based ensemble methods, i.e., 

AdaBoost and BCT, require the least training computation time, 

as shown in Tables 6 –8 . WAUCE is not as efficient as other 

models in terms of training efficiency on small datasets based 

on the results in Tables 6 and 7 . However, for the SEER dataset, 

WAUCE achieves a similar computation time level as WAE and 

SB methods, as shown in Table 8 . 
• Analysis of diagnosis variance 

One of the critical challenges for disease diagnosis is the model 

reliability, which indicates the model not only can achieve 

a high diagnosis accuracy, but also can sustain the high ac- 

curacy stably. The reliability improvement of the ensemble 

technique can be investigated from the performance variance. 

Based on Eq. (24) , the variance of each model performance is 

collected, as provided by Tables 9 –11 , for all the relevant per- 

formance metrics. Interestingly, MVE is not better than either 

AdaBoost or BCT particularly for WDBC and SEER datasets, but 

the AUC-based weighted process improves the ensemble learn- 

ing and makes the WAUCE model significantly outperform both 

AdaBoost and BCT in terms of accuracy variance reduction. The 
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Fig. 4. Diagnosis reliability comparisons on the WBC dataset. 

Table 10 

Diagnosis variance comparisons on the WDBC dataset. 

Models σ ( a ) (%) σ ( s ) (%) σ ( r ) (%) σ (AUC) (%) 

MVE 1.00 1.62 0.30 0.88 

MaxE 1.00 1.62 0.30 0.88 

MinE 0.36 0.12 1.10 0.53 

WAE 0.32 0.16 1.05 0.50 

SB 0.51 0.36 1.20 0.59 

AdaBoost 0.30 0.25 0.93 0.42 

BCT 0.69 0.62 1.77 0.88 

WAUCE 0.22 0.31 0.95 0.35 

Table 11 

Diagnosis variance comparisons on the SEER dataset. 

Models σ ( a ) (%) σ ( s ) (%) σ ( r ) (%) σ (AUC) (%) 

MVE 0.96 3.23 5.17 0.99 

MaxE 0.18 0.43 0.05 0.19 

MinE 0.09 0.04 0.23 0.09 

WAE 0.22 0.89 1.31 0.24 

SB 5.22 23.62 19.58 5.24 

AdaBoost 0.25 1.03 1.17 0.23 

BCT 0.52 5.43 4.89 0.51 

WAUCE 0.11 1.23 1.03 0.11 

comparison results show that the WAUCE model obtains the 

smallest diagnosis accuracy variance for both WBC and WDBC 

datasets. In particular, the proposed WAUCE model can achieve 

around 69.23% and 56.86% accuracy variance reduction in com- 

parison to the SB classifiers on WBC and WDBC datasets, re- 

spectively. For the SEER dataset, the MinE model obtains the 

lowest variance on both accuracy and AUC. The reason is due 

to the serious bias of MinE, which has little capacity to diag- 

nose positive cases but has the strongest capacity to diagnose 

negative cases. WAUCE is the second best model with low vari- 

ance of both accuracy and AUC on the SEER dataset. Compared 

to the SB model, WAUCE can obtain 97.89% variance reduction. 

To further investigate the reliability improvement of the pro- 

posed WAUCE model, the comparison is also conducted using 

graphical analysis. The variance of accuracy and AUC are illus- 

trated through box plots for the two datasets in Figs. 4 –6 . Com- 

paring all the models, it is obvious that the proposed WAUCE 

model can maintain high accuracies with small diagnosis vari- 

ance, which also confirms our initial objective to improve the 

breast cancer diagnosis accuracy while still reducing the diag- 

nosis variance. 
• Statistical test 

Table 12 

Friedman test results. 

Test item R WAUCE χ2 
r F F (2.76) Decision 

Accuracy (a) 1.00 13.40 22.63 Positive 

σ ( a ) 1.33 10.40 2.90 Positive 

AUC 1.00 12.50 8.45 Positive 

σ (AUC) 1.33 6.70 0.93 Negative 

To analyze the statistical significance of the performance from 

all methods, a Friedman test is applied ( Friedman, 1937 ). Based 

on performance ranking of different algorithms from different 

datasets, the Friedman test can measure the statistical differ- 

ence among the algorithms. The Friedman estimator F F , which 

follows a Fisher distribution, can be measured in Eq. (25) . 

F F = 

(N D − 1) χ2 
r 

N D (N M 

− 1) − χ2 
r 

(25) 

χ2 
r = 

12 N D 

N M 

(N M 

+ 1) 

( 

N M ∑ 

i =1 

R 2 i −
N M 

(N M 

+ 1) 2 

4 

) 

(26) 

R i = 

∑ N D 
j=1 

r i j 

N D 

(27) 

where N M 

is the number of methods, N D is the number of 

datasets compared, R i is the average rank for the i th method, 

and r ij denotes the rank of i th method on the j th dataset. 

For each evaluation dataset, the model accuracy and AUC are 

ranked from one to the number of methods, respectively. In this 

comparison, eight models are considered. r a 
i j 

= 1 represents the 

highest accuracy or AUC, and r a 
i j 

= 8 indicates the worst accu- 

racy or AUC. For model diagnosis variance test, r σ
i j 

= 1 inducts 

the lowest diagnosis accuracy or AUC variation, and r σ
i j 

= 8 in- 

dicates the model with the highest accuracy or AUC variation. 

In this test, F F follows a Fisher distribution with N M 

− 1 and 

(N M 

− 1)(N D − 1) degrees of freedom, and the confidence level 

α is set as 0.05. N M 

= 8 and N D = 3 , with degree of freedom 

N M 

− 1 = 7 and (N M 

− 1)(N D − 1) = 14 are applied, which ob- 

tain a critical value of the Fisher distribution F (7 , 14) = 2 . 76 . 

Table 12 shows the Friedman test results for accuracy ( a ), σ ( a ), 

AUC, and σ (AUC). The average ranks for WAUCE ( R WAUCE ) are 

the best among all the experimental models in terms of the 

four performance measures. In addition, the results show that 

the statistical difference of the rank for accuracy ( a ), σ ( a ), and 

AUC are also significant. 



H. Wang et al. / European Journal of Operational Research 267 (2018) 687–699 697 

Fig. 5. Diagnosis reliability comparisons on the WDBC dataset. 

Fig. 6. Diagnosis reliability comparisons on the SEER dataset. 

Table 13 

Comparison of existing and recent research model results for the WBC 

dataset. 

Models Accuracy ( a ) (%) 

C4.5 decision tree 93.47 

Naive Bayes 95.93 

SVM-RBF kernel 96.31 

SMO + J48+NB+IBk 97.28 ( Salama et al., 2012 ) 

Supervised fuzzy clustering 95.57 ( Abonyi & Szeifert, 2003 ) 

Weighted vote-based ensemble 97.42 ( Bashir et al., 2015 ) 

WAUCE (10-fold) 97.10 

• Comparison with existing models 

To compare the performance of the proposed WAUCE model 

with other algorithms in the literature, some existing methods 

have been implemented as a benchmark for the two standard 

breast cancer datasets, WBC and WDBC. The performance of the 

existing models are measured using 10-fold cross-validation ap- 

proach with five replications. For those models, which are not 

publicly available, the original accuracy results from the litera- 

ture are cited as shown in Tables 13 and 14 . 

For the WBC dataset, Table 13 shows that WAUCE model is 

quite competitive, and the WAUCE model outperforms most of 

the other classifiers. However, due to the use of feature ex- 

traction and feature selection in Salama, Abdelhalim, and Zeid 

(2012) , the performance for SMO+J48+NB+IBk is slightly better. 

Also, weighted vote-based ensemble Bashir, Qamar, and Khan 

Table 14 

Comparison of existing and recent research model results for the 

WDBC dataset. 

Models Accuracy ( a ) (%) 

K-SVM 94.19 

Naive Bayes 92.17 

SVM-RBF kernel 96.67 

RBF networks 93.70 

Supervised fuzzy clustering 95.57 ( Abonyi & Szeifert, 2003 ) 

Weighted vote based ensemble 95.09 ( Bashir et al., 2015 ) 

WAUCE (10-fold) 97.68 

(2015) achieved a comparable accuracy, because they applied 

feature selection, and also performed only one replication of 

10-fold cross validation that could have yielded a better ac- 

curacy without consideration of variance, which is different 

from our study. For the implemented models, it is obviously 

that the proposed WAUCE model achieves the highest accuracy. 

Table 14 presents the comparison results for the WDBC dataset. 

It is obvious that the WAUCE model outperforms most of the 

other models, except SVM-RBF kernel ( Aruna, Rajagopalan, & 

Nandakishore, 2011 ). However, the SVM-RBF kernel method has 

not been cross validated in Aruna et al. (2011) . In this re- 

search, the proposed WAUCE model outperforms the imple- 

mented SVM-RBF kernel model where 10-fold cross-validation 

is performed. The proposed WAUCE model outperforms the 

weighted vote-based ensemble model from Bashir et al. (2015) , 

which applies the feature selection process. 
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4.4. Discussion 

Through aggregating SVM models into the ensemble mecha- 

nism, the proposed ensemble model obtains better performance on 

both effectiveness and model reliability. The ensemble SVM learn- 

ing model especially can reduce the diagnosis variance by 56.86–

69.23%, i.e., 
σ (a SB ) −σ (a WAUCE ) 

σ (a SB ) 
; meanwhile, it increases the accu- 

racy by 0.50%-0.94%, i.e., 
a WAUCE −a SB 

a SB 
, as compared to SB, based on 

WBC and WDBC datasets. For the large scale breast cancer dataset, 

the proposed WAUCE model can reduce the accuracy variation by 

around 97.89%, while it still increases accuracy by 33.34%, com- 

pared to the best single SVM model. 

The best accuracies achieved by the proposed WAUCE model 

are 97.10%, 96.68%, and 76.42% for WBC, WDBC, and SEER datasets, 

respectively. The lowest accuracy variances obtained by the pro- 

posed WAUCE model are 0.08% and 0.22% for WBC and WDBC 

datasets, respectively. For the SEER dataset, although the proposed 

WAUCE model achieves only second lowest accuracy variance, the 

accuracy of WAUCE is far better than MinE, which has the low- 

est accuracy variance. Overall, the results show that the accuracy 

and reliability of the patient disease diagnosis process are signif- 

icantly increased. Several aspects contribute to the good perfor- 

mance of the proposed model. Typically, bagging ensembles are 

formed from a single model, which is also called pure-bagging 

( West, Mangiameli, Rampal, & West, 2005 ). As a result, the weak- 

ness and drawbacks of the single model, which mainly come from 

the limitation of the model structure, cannot be overcome. Instead, 

two types of SVM structures and six different kernel functions 

are adopted in the WAUCE SVM model, which can not only in- 

crease the ensemble model structure diversities, but also increase 

the model parameter diversities. Also, the 12 SVM structures pro- 

vide a class of strong bases in the WAUCE model, which signifi- 

cantly benefit the ensemble process. In addition, instead of using 

a typical majority voting approach, the weighted ensemble mecha- 

nism treats the decision from each individual classifier differently, 

which can increase the contribution of those good base classifiers 

and weaken the opinion from poor classifiers. The AUC, as a com- 

prehensive evaluation of each individual classifier’s performance, is 

applied especially to the decision tradeoff, which significantly pro- 

motes the decision-making process compared with other ensemble 

strategies. 

5. Conclusions and future work 

In this research, an SVM-based weighted AUC ensemble learn- 

ing model is proposed for breast cancer diagnosis. C -SVM and ν- 
SVM with six kernel functions are utilized to increase the diversity 

of the base model set. Five fusion strategies are defined to aggre- 

gate the decisions from different base models to compare with the 

proposed WAUCE model. All the results are conducted using two 

standard breast cancer datasets and one large real dataset from 

the perspectives of model effectiveness and performance reliabil- 

ity. The results show that the proposed WAUCE model can signifi- 

cantly increase cancer diagnosis performance. To highlight the im- 

portance of model reliability for illness diagnosis, the performance 

variances are also compared in this paper. The proposed WAUCE 

structure can especially reduce variance of diagnosis accuracy by 

up to 69.23% while still increase accuracy by up to 0.94% com- 

pared to single best models on small datasets. In terms of the SEER 

breast cancer dataset, the proposed WAUCE model especially re- 

duces the variance by around 97.89%, while it still increases accu- 

racy by 33.34%, compared to the best single SVM model. 

In the future, there are several aspects that can be extended 

based on this research. The SVM ensemble model structures can 

be used for other breast cancer datasets; relevant feature selec- 

tion and extraction techniques can be applied to the model feature 

preparation process. Then, the SVM ensemble learning can also be 

used for other disease diagnoses, such as thyroid cancer, oral can- 

cer, and diabetes. Also, in terms of computation time, parallel com- 

putation techniques can be helpful to accelerate the training pro- 

cess for the proposed WAUCE model. 
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