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Abstract

To fully integrate the advantages of several forecasting models and improve the accuracy of load forecast results, the
application of the combined forecasting method to power system load forecasting is introduced in this paper. The evolutionary
programming and fuzzy comprehensive evaluation methods are employed to deduce the weight coefficients of each model.
Practical cases are studied using the two methods and tested to be feasible and effective. © 2001 Elsevier Science B.V. All rights
reserved.
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1. Introduction

Power system load forecasting, the foundation of
power network planning and power network construc-
tion, receives close attention from engineers. A consum-
mate forecasting model can accurately predict future
load demands. Though there are various forecasting
models, no single one has performed well enough be-
cause each model can take just several or usually only
one relevant factor into consideration. A good model
may not be ideal when the power industry and the
power network has developed into an advanced stage.
In practical applications, engineers often try several
kinds of models. The result of each forecasting model is
compared and analysis has to be done by experienced
forecasters to get the best forecasting result.

To fully utilize the useful information from the mod-
els, the combined forecasting method is introduced in
this paper. It is one of the most popular subjects in the
field of forecasting methods [1–3]. The theory of the
combined forecasting method is based on a certain
linear combination of various results from different
forecast models. The fitting capacity of the combined

forecasting model is greatly improved, and the com-
bined forecasting result will show higher precision.
Formulations have been developed in the past litera-
tures for the optimal combined forecasting method,
whose deviation reaches the minimum and is less than
that of each single forecasting method. The application
of the combined forecasting method can combine sepa-
rate methods and integrate merits of each model to
provide a more accurate result.

2. Principles of the combined forecasting method

For a certain forecasting problem, assume the histor-
ical recorded value in period t is yt (t=1, 2, …, n) and
there are m kinds of forecasting models. Let the fitting
value in period t by model i is fit (i=1, 2, …, m), then
the corresponding deviation is eit=yt− fit. Suppose the
weight coefficient vector is W= [w1, w2, …, wm ]T, �m

i=

1 wi=1, wi is the weight coefficient of model i. The
combined forecasting model can be expressed as
follows:

ŷt= �
m

i=1

wi fit (t=1, 2, …, n) (1)

or
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Y� =FW (2)

Where, Y� = [ŷ1, ŷ2, ···ŷn ]T F= [ fit ]n×m

The key of the combined forecasting method is to
determine the weight coefficients of each model. There
are various optimization criteria for the derivation of
the weight coefficient vector. In this paper, two meth-
ods: Evolutionary Programming and Fuzzy Compre-
hensive Evaluation are introduced.

3. Optimizing the combined forecasting method

3.1. Determining weight coefficients by e�olutionary
programming

The absolute error and the proportional error of the
combined forecasting model in period t are expressed,
respectively, as follows:

et=yt− ŷt (3)

�t=
et

yt

100% (4)

When constructing a combined forecasting method,
an appropriate weight coefficient vector should be cho-
sen to minimize et and �t of the combined forecasting
model. A normal performance index is employed:

min J1= ( �
n

t=1

�et �p)1/p (5)

min J2= ( �
n

t=1

��t �p)1/p (6)

Regarding the absolute error et is used as the opti-
mized criteria, the optimization problem of the com-
bined forecasting is transformed into the problem of
constrained non-linear programming problem:

�
�
�
�
�
�
�
�
�
�
�

min J1= ( �
n

t=1

�et �p)1/p

yt− �
m

i=1

wi fit=et (t=1, 2, …,n)

�
m

i=1

wi=1

wi�0

(7)

Much work has been done in the application of
evolutionary programming to power system in recent
years [4–6]. The optimization using evolutionary pro-
gramming avoids the difficulties encountered by con-
ventional optimization methods, such as the
phenomenon of local optimum, the construction of
constrained conditions and objective functions, and the
dimension disaster. Variables need not be binary en-

coded and decoded when using evolutionary program-
ming. Compared with Genetic Algorithms, it is a better
choice for successive optimization problems [7]. By the
operators: selection, crossover and mutation, the opti-
mal result can be reached. Here, the weight coefficients
are regarded as variables to be encoded and J1 in Eq.
(7) is chosen as the fitness function. The optimal weight
coefficients satisfying Eq. (7) will come out by solving
the optimal problem.

3.2. Determining weight coefficients by fuzzy
comprehensi�e e�aluation

As a basic application of fuzzy set theory, fuzzy
comprehensive evaluation is quite suitable for the eval-
uation of multi-factor and multi-level problems. It takes
all correlated factors into consideration, and applies
principles of fuzzy variation and membership function
analyzing, to make the comprehensive evaluation.

3.2.1. Fuzzy semantic operators and semantic �alues
As the expression form of thoughts inside our brains,

the natural fuzzy language differs distinctly from the
abstract mathematically defined formal language for its
fuzziness. It objectively reflects the semantic transition
among different evaluation levels, rather than the exact
but rigid formal language. From this viewpoint, the
fuzzy language contains much more evaluation
information.

For various evaluating semantic, the concepts of
fuzzy set and membership function are introduced.
According to the theory of Fuzzy Semantic Quantita-
tive and the definition of Fuzzy Language Variable, the
fuzziness of natural language’s semantic can be quanti-
tatively depicted.

Usually, for central words ‘bad’, ‘ordinary’ and
‘good’, in the discussed universe X [0,1], the semantic
fuzzy sets Sbad, Sordinary, Sgood are defined, and the
memberships for elements x�X are formulated respec-
tively, as follows:

�S bad
(x)=

�e− (x−0.15)2/2×0.10602
0.15�x�1

1 0�x�0.15
(8)

�S ordinary
(x)=e− (x−0.5)2/2×0.10602

(9)

�S good
(x)=

�e− (x−0.85)2/2×0.10602
0� x�0.85

1 0.85�x�1
(10)

The word ‘operator’ is a concept borrowed from
mathematics, which can adjust the semantic meaning of
its central word. Here, two kinds of semantic operators
are used:

3.2.1.1. Centralizing semantic operators. Words like
‘very’, ‘much’, ‘greatly’, ‘tremendously’ etc, accentuate
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the semantic meaning of the central word. The mem-
bership distribution of the semantic fuzzy sets in the
universe X will be centralized.

3.2.1.2. Scattering semantic operators. Words like
‘some’, ‘fairly’, ‘a little’ etc, weaken the semantic mean-
ing of the central word. Just opposite to the centralizing
operators, they scatter the distribution of the member-
ship in the universe X to both fringes.

The effects of the semantic operators ‘fairly’, ‘very’
and ‘tremendously’ can be defined respectively as
follows:

Hfairly�S(x)= (�S(x�0.07))0.5 (11)

Hvery�S(x)= (�S(x�0.09))2.0 (12)

Htremendously�S(x)= (�S(x�0.11))3.0 (13)

In the equations, the upper operator and the lower
operator are corresponding to the central words ‘bad’
and ‘good’ respectively. And the membership functions
of each semantic fuzzy set in the universe X can be
illustrated as Fig. 1.

3.2.2. Comprehensi�e e�aluation by fuzzy language
Let U= [u1, u2,…, um ] be the factor set to evaluate

different schemes. For a certain scheme, according to
the factor set U, suppose it receives a comment set
V= [�1, �2, …, �m ] (�i stands for the comment of fuzzy
language evaluation for factor ui and it reflects the
uncertainty of evaluating the semantic extension). Ex-
press the discussed universe X as a finite set F with n
elements: F= [x1, x2,…, xn ]. Each element has a mem-
bership to the semantic fuzzy set of each comment
according to the corresponding membership function in
the universe X. For n elements in the finite set F and m
comments corresponding to m factors, a m×n evalua-
tion matrix Rm×n is deduced:

R= [r ]m×n (14)

where, rij stands for the membership value of xn to the
fuzzy set of comment �m.

The scheme receives different comments for different
evaluation factors, and each factor has various influ-
ences on the comprehensive evaluation. So, a fuzzy
vector A� = [a1, a2, …, ai, am ] should be taken into ac-
count to denote the various importance of each factor.
ai stands for the membership value of ui to A� , which is
the weight coefficient of ui. After the fuzzy vector A� and
the fuzzy comprehensive evaluation matrix R= [r ]m×n

are deduced, the fuzzy vector B� of first level compre-
hensive evaluation can be got by fuzzy transformation:

B� =A� °R� = [b1, b2, …, bn ]

bj= (a1*
�

r1j) *
+

(a2*
�

r2j) *
+

··· *
+

(am*
�

rm1j) (15)

Where, bj stands for the membership value of element xj

to B� , which is expressed as model M(*
�
, *

+
). As for

symbols ‘‘*
�
, *

+
’’, there are different choices. In this

paper, model M(� , �), M(power, � ) and M(*, + )
are used, which are defined as follows:
� M(� , �)

bj= �
m

i=1

(ai�rij)

B� = [b1, b2, ···bn ]

=
��

m

i=1

(ai�ri1), �
m

i=1

(ai�ri2), ···, �
m

i=1

(ai�rin)
n

(16)

Here, ‘� ’ is the ‘Minimize’ operator and ‘�’ is the
‘Maximize’ operator. For example, ai�rij=min(ai,
rij); ai�rij=max(ai, rij).

Generally, a1=a2=…=am=1 is used.
� M(Power, � )

bj= �
m

i=1

(r ij
ai)

B� = [b1, b2, ···bn ]=
��

m

i=1

r i1
ai, �

m

i=1

r i2
ai, ···, �

m

i=1

r in
ai
n

(17)

Generally, a1=a2=…=am=1 is used.
� M(*, + )

bj= �
m

i=1

(ai rij)

B� = [b1, b2, ···bn ]=
� �

m

i=1

ai ri1, �
m

i=1

ai ri2, ···, �
m

i=1

ai rin

n
(18)

Generally, a1=a2=…=am=1/m is used.
The application of different models will lead to dif-

ferent evaluate results: B� 1, B� 2 and B� 3. The index B� 1

evaluates the scheme from the most advantageous side.
The index B� 2 evaluates the scheme from the most
adverse side. And the index B� 3 evaluates the scheme
from the average viewpoint. Using only one of theseFig. 1. Membership function of each comment.
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Table 1
Fitting values of power supply in Yancheng by each single model (109 kW h)

1989 1990 1991Year 19921988 1993 1994 1995

19.87 21.51 23.34History records 25.3617.33 27.40 30.57 33.84
19.25 21.52Model 1 23.8016.97 26.07 28.35 30.63 32.90
20.28 21.12 21.67 23.6221.12 26.10Model 2 30.34 34.73
19.95 21.78 23.79 25.98Model 3 28.3718.26 30.99 33.84
18.91 20.69 22.63 24.7617.29 27.08Model 4 29.62 32.41
17.31 20.05 22.78Model 5 25.5214.57 28.26 31.00 33.74

indexes will lose the information about the evaluation
from other viewpoints, and will lead to a unilateral
evaluation. All indexes of B� 1, B� 2, B� 3 should be inte-
grated comprehensively into the secondary level evalua-
tion. For the index set B� = [B� 1, B� 2, B� 3], a weight vector
W� = [w1, w2, w3] (wi�0 and �3

i=1 wi=1 is given. The
fuzzy vector P from the second comprehensive evalua-
tion is formulated as:

P� =W� · B� = [p1, p2, …, pn ] (19)

pi stands for the membership value of the xi (xi�X) to
the semantic fuzzy set of the comprehensive evaluation.
According to the comprehensive evaluation fuzzy vec-
tor P� , the semantic fuzzy set Si of the comprehensive
evaluation in the discussed universe X and its member-
ship function �Si(x) can be established.

3.2.3. Ad�antage relationship determination and the
combination of schemes

For normal convex fuzzy sets defined in the same
discussed universe X, the advantage degree of fuzzy set
Si to fuzzy set Sj is expressed as:

q�(si, sj)=�(��Si
(x)���Sj

(x))*
xi*
xj*

x�X (20)

Where,

��Si(x)=
�max �Si(x) x�xi*

�Si(x) x�xi*

xi* stands for the minimum value which makes
�Si

(xi*)=max �Si
(x); xj* stands for the minimum value

which makes �Sj
(xj*)=max �Sj

(x).
From the definition of ‘advantage’ q�(Si, Sj), we can

get the advantage relationship matrix Q of the fuzzy set
S containing n fuzzy sets Si (i=1, 2,..., n):

Q�=

�
�
�
�
�

q�(1, 1) q�(1, 2) ··· q�(1, n)
q�(2, 1) q�(2, 2) ··· q�(2, n)

··· ··· ··· ···
q�(n, 1) q�(n, 2) ··· q�(n, n)

	
�
�
�



(21)

q�(i, j ) stands for the advantage degree of fuzzy set Si

to Sj.
Define the fuzzy vector W� = [w1, w2, ···, wn ], wi=

�q�(i, j ) (wi stands for the comprehensive advantage
degree of scheme i to other schemes). Then, the vector
W� is normalized to vector W, which is regarded as the
weight coefficient vector.

W=
� w1

�
n

i=1

wi

,
w2

�
n

i=1

wi

, ···,
wn

�
n

i=1

wi

	
(22)

By combining every scheme according to their weight
coefficients expressed in vector W, an optimized com-
bined scheme comes out.

4. Load forecasting for Yancheng city using the
combined forecasting method

The history recorded data of power load and the
correlated statistics are initialized at first. The following
proper forecasting models are chosen: Trend Analysis,
Correlation Analysis, Elasticity Coefficient Analysis,
Increasing Rate Analysis and Brown Adaptive Expo-
nential Smoothing, Per Production Consumption,
Triple Exponential smoothing, Gompertz Growth
Curve Fitting, GM (1,1) Gray System and Fuzzy Poly-
nomial Curve Fitting model.

4.1. Combined forecasting method by e�olutionary
programming

Five models: Trend Analysis model (Model 1), Cor-
relation Analysis model (Model 2), Elastic Coefficient
Analysis model (Model 3), Increase Rate model (Model
4), Brown Adaptive Exponential Smoothing model
(Model 5) are used to dispose the history record of the
power supply and the peak load in Yancheng. The fixed
values of each record are derived as shown in Tables 1
and 2. Table 3 shows the forecasting results in 2000.

In this paper, the combined optimized forecasting
model is based on the single forecasting models, and
sets the minimized absolute errors as the optimization
criterion, as Eq. (7) expresses. Let the normal perfor-
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Table 2
Fitting values of peak load in Yancheng by each single model (104 kW)

1989 1990 1991Year 19921988 1993 1994 1995

33.70 34.80 38.00History records 40.5032.80 43.60 50.10 54.10
32.68 36.17Model 1 39.6729.18 43.17 46.66 50.16 53.66
34.18 35.39 36.17 38.9735.39 42.53Model 2 48.60 54.88
36.36 38.85 41.51 44.35Model 3 47.3934.03 50.63 54.10
35.28 38.14 41.23 44.5832.63 48.19Model 4 52.10 56.33
29.52 33.84 38.16 42.48 46.80 51.12 55.44Model 5 25.20

mance index p=2. By evolutionary programming, the
following results as shown in Tables 4–6 are deduced.

As Table 6 shows, the square deviation of the com-
bined forecasting model is less than that of any single
forecasting model. Table 7 shows the forecast results of
the power supply and the peak load of Yancheng in
2000 by the combined optimized forecasting model.

4.2. Combined forecasting method by fuzzy language
comprehensi�e e�aluation

4.2.1. Comprehensi�e e�aluations of each forecasting
model using fuzzy language

For each single forecast model, take three evaluation
factors into account U={u1, u2, u3}.

u1, the fix degree of the model for long range
forecast;
u2, the deviation degree of fixed values compared
with history records;
u3, the trust degree of the decision maker to the
model.
When applied to forecast the power supply, the com-

ments of each model for three evaluation factors are
shown in Table 8.

Express the discussed universe as a finite set with 51
members from 0.0 to 1.00 with interval 0.02. X= [0.00,
0.02, 0.04, …, 1.00]. The fuzzy language comment
matrixes of each model are deduced as R3×51. Using
model M(� , �), M(power, � ) and M(*, + ), respec-
tively, the first level comprehensive evaluation B� 1, B� 2

and B� 3 are deduced. For each model, the same weight
1/3 is given. That is, W= [1/3, 1/3, 1/3]. Then the fuzzy
vector P from the second comprehensive evaluation is
got using Eq. (19). The membership functions charts of
the fuzzy vector P for eight forecasting models in
discussed universe are shown in Fig. 2.

4.2.2. Ad�antage relationships and the combination of
the models

For each forecasting model, by analyzing the mem-
bership function chart of the comprehensive evaluation,
the advantage relationship matrix Q� is given as Eq.
(23).

Table 3
Forecasting results of the power supply and the peak load of
Yancheng in 2000 by each single forecasting model

Power supply (109 kW h)Forecasting Peak load (104 kW)
models

44.28 71.14Model 1
92.7253.88Model 2

58.35Model 3 91.69
50.76Model 4 83.20
47.43 77.03Model 5

Table 4
Weight coefficients of each single model in the combined forecasting
model

Weight coefficientsForecasting models

Power supply Peak load

Model 1 0.168 0.113
0.116Model 2 0.782

Model 3 0.435 0.053
0.156Model 4 0.039
0.125Model 5 0.013

Table 5
Fitting values by the combined forecasting model (109 kWh)

Peak load (104 kW)Power supply (109 kW h)Year

17.76 34.381988
19.381989 34.11

1990 21.27 35.75
23.241991 37.07

1992 39.9925.47
27.891993 43.53
30.641994 49.05
33.551995 54.76
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Q�=

�
�
�
�
�
�
�
�
�
�
�
�
�

0.5557 0.0858 0.0473 0.0324 0.0275 0.0506 0.0517 0.0032

2.8898 0.5575 0.2461 0.1730 0.1619 0.2640 0.2848 0.0169

5.2239 1.0046 0.5557 0.5936 0.5557 0.5936 0.6074 0.5330

4.8904 0.9434 0.5203 1.0000 0.9362 0.5569 0.5706 0.8980

5.2239 1.0077 0.5557 1.0682 1.0000 0.5949 0.6095 0.9592

4.8904 0.9425 0.5203 0.5569 0.5214 0.5569 0.5699 0.4995

4.7793 0.9220 0.5084 0.5450 0.5102 0.5443 0.5577 0.4882

5.4461 1.0506 0.5794 1.1136 1.0426 0.6202 0.6355 1.0000

	
�
�
�
�
�
�
�
�
�
�
�



(23)

Using equation wi= � q� (i, j ), the weight coeffi-
cient vector W� supply can be obtained for the forecast of
power supply:

W� supply= [0.0032, 0.0169, 0.5330, 0.5203, 0.5557, 0.4995,

0.4882, 0.5794]

Using Eq. (22), W� supply can be normalized to vector
Wsupply:

Wsupply= [0.0010, 0.0053, 0.1667, 0.1628, 0.1739, 0.1563,

0.1527, 0.1813]

Table 9 shows the forecast results of the power
supply of Yancheng in 2000 using the combined opti-
mized forecasting model. For the forecast of the peak
load, similar methods can be used.

5. Conclusions

In this paper, the application of the combined fore-
casting method in power system load forecasting is
proposed and proved to be feasible. Results show that
the optimization by evolutionary programming method
is necessary and effective.

It is necessary for load forecasting to take various
relevant factors into consideration when evaluating

Table 6
Square deviations of each single model and the combined forecasting
model

Square deviationForecasting models

Peak loadPower supply

35.50Model 1 3.02
16.98Model 2 23.04
66.782.65Model 3

5.60Model 4 70.80
17.58Model 5 93.18

Combined model 6.210.84

Table 7
The forecast results of the optimized combined forecasting model

Forecasting year Power supply (109 kW h) Peak load (104 kW)

2000 89.2152.92

Table 8
Comments of each model

Forecast models Evaluation factors

u2u1 u3

OrdinaryFuzzy Polynomial Curve fitting model Very bad Bad
OrdinaryPer production Consumption model Bad Ordinary
Very goodElastic Coefficient analysis model Ordinary Good

GoodGood Fairly goodGomperta Growth Curve fitting model
Fairly good GoodVery goodGM(1,1)Gray System model

Brown Adaptive Exponential Smoothing model Good Ordinary Good
Fairly goodGoodCorrelation Analysis model Ordinary

Very goodTriple Exponential Smoothing model Tremendously good Very good
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Fig. 2. Comprehensive evaluation results of each model.

Table 9
The forecast result of the power supply of Yancheng city in 2000
using the comprehensive evaluation methods

Load forecast models Power supply (109

kW h)

Fuzzy Polynomial Curve fitting model 48.08
50.12Per production Consumption model
58.35Elastic Coefficient analysis model

Gomperta Growth Curve fitting model 55.32
54.84GM(1,1)Gray System model
47.43Brown Adaptive Exponential Smoothing

model
Correlation Analysis model 53.88

53.98Triple Exponential Smoothing model
54.01Optimized combined forecast
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